
Maemo Packaging Policy
v0.23

Authors: The Nokia maemo team
Scope: Packaging of open and proprietary components in IT OS 2008
Status: Draft
Wiki: TODO

May 8, 2008

Legal notice

Copyright c© 2007–2008 Nokia Corporation. All rights reserved.

Nokia and maemo are trademarks or registered trademarks of Nokia Corporation. Other
product and company names mentioned herein may be trademarks or trade names of
their respective owners.

Disclaimer

The information in this document is provided “as is,” with no warranties whatsoever,
including any warranty of merchantability, fitness for any particular purpose, or any
warranty otherwise arising out of any proposal, specification, or sample. This docu-
ment is provided for informational purposes only.

Nokia Corporation disclaims all liability, including liability for infringement of any
proprietary rights, relating to implementation of information presented in this docu-
ment. Nokia Corporation does not warrant or represent that such use will not infringe
such rights.

Nokia Corporation retains the right to make changes to this material at any time, with-
out notice.

License

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.2 or any later version published by
the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and
no Back-Cover Texts.

The full license text can be found at http://www.gnu.org/copyleft/fdl.html. A
copy is included in the maemo-policy package, which also contains the Transparent
Copy of this document in LYX format.

2

Contents

1 Introduction and processes 6

1.1 Target audience . 6

1.2 Purpose . 6

1.3 New versions of this document . 6

1.4 Process for updating the policy . 7

1.5 Relation to Debian Policy . 7

1.6 Conformance and handling packaging differences 8

1.6.1 Policy violations . 8

1.6.2 Differences between corresponding maemo and Debian packages 8

1.6.3 Maemo packages that are not yet in Debian 9

1.7 Terminology . 9

2 The maemo archives 9

2.1 Categories . 9

2.2 Sections . 9

2.3 Priorities . 10

3 Binary packages 10

3.1 Package naming . 10

3.2 The version of a package . 10

3.2.1 Example of modifying an upstream package 11

3.2.2 Example of packaging sources not yet in the upstream distri-
bution . 11

3.3 Package maintenance . 11

3.4 Dependencies . 11

3.5 Virtual packages . 12

3.6 Base system . 12

3.7 Essential packages . 12

3.8 Prompting in maintainer scripts . 13

3.9 Separating files into binary packages (new section) 13

3.9.1 Library and program packages 13

3.9.2 Development packages . 13

3.9.3 Localization packages . 14

3.9.4 Documentation packages . 14

3.9.5 Debug packages . 14

3.9.6 Configuration packages . 14

3

4 Source packages 15

4.1 Package relationships . 15

4.2 Changelog: debian/changelog . 15

4.3 Main building script: debian/rules 15

4.3.1 DEB_BUILD_OPTIONS (new section) 15

4.3.2 Compilation options and stripping (new section) 17

4.4 Original sources (new section) . 17

5 Control files and their fields 17

5.1 Package control files: debian/control 17

5.1.1 Maintainer . 17

5.1.2 Section . 18

5.1.3 Architecture . 18

5.1.4 Depends . 18

5.1.5 Pre-depends . 18

5.1.6 Standards-Version . 18

5.1.7 Installed-Size . 18

6 Package maintainer scripts and installation procedure 19

6.1 Differences between scratchbox and device environments (new section) 19

6.1.1 Lifeguard reboots . 19

6.2 Controlling terminal for maintainer scripts 19

7 Declaring relationships between packages 19

8 Shared libraries 20

9 The operating system 20

9.1 File system hierarchy . 20

9.2 Users and groups . 20

9.3 System run levels and init.d scripts 20

9.4 Console messages from init.d scripts 20

9.5 Cron jobs . 20

9.6 Menus . 20

9.7 Multimedia handlers . 21

9.8 Registering Documents using doc-base 21

4

10 Files 21

10.1 Binaries . 21

10.2 Libraries . 21

10.3 Scripts . 22

10.4 Configuration files . 22

10.5 Log files . 22

11 Customized programs 22

11.1 Daemons . 22

11.2 Editors and pagers . 23

12 Documentation 23

12.1 Manual pages and info documentation 23

12.2 Preferred documentation formats . 23

12.3 Examples . 23

A Common problems 24

B DEB_BUILD_OPTIONS examples 24

B.1 Thumb option . 24

B.2 VFP option . 24

B.3 Parallel option . 24

B.4 Examples of nolauncher, nodocs and nocheck 24

C Example of creating -dbg packages 24

D Maintainer script utilities 25

E List of essential packages 25

F List of virtual packages 25

G Lintian overrides 25

5

Maemo Packaging Policy Draft

1 Introduction and processes

1.1 Target audience

The target audience for this document are developers wanting either to develop for or
port packages to the maemoTM platform. The contents of these packages can be either
open or proprietary, the rules are the same for both.

1.2 Purpose

This document describes the general rules agreed for creating maemo packages and
some examples on how to conform to them. Following them makes package integration
easier (non-compliance is a blocker or critical bug) and it will help maintaining the
packages in the long run. Conforming packages should also install and behave better
in the users’ devices.

For related documents, see:

[Quick Start Guide] An overview of the maemo platform

[Debian Policy] Policy for Debian, the upstream distribution of maemo

[Maemo Application Packaging] A guide for making packages installable in the Ap-
plication Manager

[Maemo Coding Guidelines] Guidelines for creating the software that is packaged

[Maemo Policy wiki] Wiki for information related to the policy process:

• Lists of current and rejected policy additions and update proposals

• Details of differences between maemo and Debian distributions

• Common packaging mistakes

1.3 New versions of this document

This manual is distributed as the maemo-policy package in the maemo repositories.

The maemo-policy package also includes the file upgrading-checklist.txt which
indicates policy changes between versions of this document.

Note that policy follows the tools, not the other way round. The process is following:

1. Change tools (dpkg, apt etc.)

2. Update policy to match the changed tools

Section 1 6(27)

Maemo Packaging Policy Draft

1.4 Process for updating the policy

The maemo packaging policy is maintained by the Nokia maemo team. Proposals for
policy changes and additions shall be documented in the maemo packaging policy Wiki
and discussed on the maemo-developers@maemo.org mailing list.

Proposals can be accepted into the policy after a certain consensus is established. Re-
jected proposals are listed separately in the Wiki.

E-mails concerning the policy should include the word “policy” in the subject. For
errors in this document and any issues that need to be tracked, a bug can also be filed
against the maemo-policy package in the maemo Bugzilla.

TODO: This is the intended update process. At the time of writing this version of the
document, the policy wiki and bugzilla component do not exist yet. Also, a separate
policy mailing list could be set up if necessary.

1.5 Relation to Debian Policy

This document is modeled after the Debian Policy manual version 3.7.2.2 (see [Debian Policy]).
It lists only the differences between the Debian policy and the maemo packaging pol-
icy, stating reasons for the differences and including some other notes on subjects dis-
cussed in the Debian policy. The main sections here have the same numbering as the
corresponding sections of the Debian Policy manual. Subsections do not necessarily
have the same numbering but have (roughly) the same names as in the Debian Policy
manual.

In general maemo packages should follow the Debian policy. However, there are some
items where maemo:

• Is more strict because it’s an embedded distribution, aimed at consumer products
with more limited resources and also e.g. different legal requirements

• Is more relaxed because the target (Nokia) devices are used only through a spe-
cific UI and do not have multiple simultaneous users

• Differs from Debian because each distribution has its own objectives, maintain-
ers and infrastructure.

The lintian command (from the lintian package) on Debian (and derived) Linux
distributions can be used to check packages against the Debian Policy and good pack-
aging practices1. Currently maemo doesn’t provide a utility to check conformance to
the additional policies stated in this document.

TODO: Check this policy against changes or additions in Debian Policy 3.7.3.0 which
was released recently

1You can use the -I option for additional checks, but not all of them are strictly necessary to adhere to.
You can also try Debian linda tool from the linda package.

Section 1 7(27)

Maemo Packaging Policy Draft

1.6 Conformance and handling packaging differences

The policy does not require that maemo would have the same packages available (or
the same versions of packages) as Debian.

However, when the same software or functionality is available in both maemo and
Debian, it should be packaged similarly when possible, to improve compatibility and
to reduce maintenance and porting overhead.

This section describes the processes and general guidelines for ensuring compatibility
and policy conformance.

1.6.1 Policy violations

If a package doesn’t conform to the maemo packaging policy, or to Debian Policy in
issues not covered by the maemo packaging policy, one of the following actions MUST
be taken for the package to be acceptable for maemo:

• The package is fixed

• The maemo packaging policy is updated to accept this exception

• The policy change is propagated to upstream (to Debian Policy)

Bugs filed for policy violations should include the keyword “policy”.

1.6.2 Differences between corresponding maemo and Debian packages

When a package in maemo conforms to the policy, but the packaging differs from De-
bian in a way that could cause incompatibilities (and the difference is not because of
something stated in this policy document), a bug with a “packaging” keyword SHOULD
be filed.

Here incompatibilities means anything that would cause problems using the package
together with other packages, including e.g. the location of files, package naming,
whether the package provides what is expected from it, that it doesn’t include con-
flicting files without declaring a conflict, etc.

If the bug is valid, the packaging SHOULD be changed to resolve the issue. (If the
issue is minor or can’t be fixed now, that should only affect the severity or schedule,
and the bug should remain open.) Reasons for WONTFIX could be e.g.:

• the constraints of the device environment,

• that changing the current packaging or behavior would break some specific prod-
uct feature, or

• that the packaging change has already been promoted upstream or Debian is
otherwise considering a similar packaging change.

Currently maemo corresponds mostly to the Debian 4.0 (“Etch”) release, so packaging
SHOULD be modeled after that or a newer Debian version.

TODO: When the maemo policy wiki has been created, the process for documenting
differences there should be defined

Section 1 8(27)

Maemo Packaging Policy Draft

1.6.3 Maemo packages that are not yet in Debian

Open source maemo software SHOULD include packaging files (the debian/ direc-
tory) in the project’s public version control, even if the actual packages wouldn’t yet
be available in the public maemo repositories.

This helps to make sure that if Debian or some Debian derivative distribution decides
to include that software, they have a model for how to package it, and unnecessary
differences can be avoided. It also allows other distributions’ maintainers to review
and suggest improvements to the packaging.

When packaging new software, please note the correct use of the version string: If the
package is native to maemo (does not have an upstream), a revision part should not be
used; otherwise see the policy about packaging upstream sources in section 3.2.

1.7 Terminology

BTS Bug Tracking System. The public BTS for maemo is at
https://bugs.maemo.org/

Upstream sources The original, unpackaged source code for some software

Upstream distribution The distribution where packaged sources are taken from. The
upstream distribution for maemo is Debian. In some cases maemo also packages
upstream sources directly instead of using or modifying Debian source packages.

Upstream package A package in the upstream distribution.

The uppercase words “MUST”, “SHOULD” and “MAY” are used to distinguish the
significance of the various guidelines in this policy document. Packages that do not
conform to the guidelines denoted by “MUST” will generally not be considered ac-
ceptable for maemo. Non-conformance with guidelines denoted by “SHOULD” will
generally be considered a bug, but will not necessarily render a package unsuitable for
distribution.

2 The maemo archives

2.1 Categories

Debian’s “main”, “contrib” and “non-free” categories are not used as such in maemo
packages. The directory structure of repositories may follow this model or something
else, but that is not relevant to packaging and therefore not in the current scope of this
document.

2.2 Sections

Packages are grouped into sections as in Debian, but SHOULD NOT specify a category
in the segment part. (However it is not a bug if a package taken from Debian and made
available in maemo retains its “contrib” or “non-free” segment.)

Section 2 9(27)

Maemo Packaging Policy Draft

Instead maemo defines a user segment for controlling visibility in the Application
Manager. Packages that are intended to be visible in the Application Manager MUST
belong to the user segment, and packages that are not intended to be visible (such as
libraries and other dependencies) MUST NOT belong to that segment.2

The section of packages in the user segment SHOULD be one of the following: ac-
cessories, communication, games, multimedia, office, other, programming, support,
themes, tools.3 The sections in this list will appear correctly localized in the Applica-
tion Manager.

As an example, to put a package into the Office section and make it visible to the user,
the value of the Section field in the debian/control file should be user/office.

Packages not in the user segment SHOULD use the sections listed in the Debian Policy
(http://www.debian.org/doc/debian-policy/ch-archive.html#s-subsections).

2.3 Priorities

Maemo doesn’t currently use package priorities for anything. For future compatibility,
please conform to the Debian policy.

3 Binary packages

3.1 Package naming

Any use of the word “maemo” is subject to the trademark policies and guidelines set
forth at maemo.org (see [Maemo Trademark Policy]).

In general, a package may use the word “maemo” as a part of its name only if the
package is both:

• Created or approved in writing by Nokia Corporation, and

• Intended to be used only in the maemo environment (either within Scratchbox or
devices)

Packages that were published with the word “maemo” in the package name before 11th
May 2007 (when the trademark policy was published) may continue using that name;
see the Trademark FAQ available at maemo.org.

3.2 The version of a package

If an upstream package is re-packaged or otherwise modified for maemo, a maemo
revision MUST be appended to the upstream revision. The resulting revision string
SHOULD have the form “RidentifierX” where:

2See also [Maemo Application Packaging]
3Note these sections differ from Debian, and therefore the lintian utility will complain about them.

Section 3 10(27)

Maemo Packaging Policy Draft

• R is the upstream revision

• If the modification is intended (only) for the maemo platform, identifier SHOULD
be “maemo”.4 In other cases some suitable other identifier should be used.

• X is a monotonically increasing number.

If upstream sources are packaged for maemo directly, when an upstream package
for the corresponding version does not exist but is likely to become available later,
a maemo revision prefixed with zero SHOULD be used (resulting in “0identifierX”).

These rules ensure that when a new upstream package is released, its revision will be
higher and it will be considered as an upgrade from the older maemo package (the
future upstream package may or may not require modification to fit into maemo, but
that should not be a consideration when choosing revision numbers). This is similar to
how e.g. Ubuntu deals with Debian packages.5

To verify that the new version is higher than the previous maemo version, but lower
than the next upstream version would be, compare the version numbers with:
dpkg --compare-versions oldversion lt newversion && echo true

Otherwise the rules for package versions are the same as in Debian. (Please note the
proper format of the version string: For native packages, i.e. software which doesn’t
have an upstream, use a version number without a revision part.)

3.2.1 Example of modifying an upstream package

• Version of upstream sources: 0.10

• Version of upstream package: 0.10-4

• Version of modified package in maemo: 0.10-4maemo1

3.2.2 Example of packaging sources not yet in the upstream distribution

• Version of upstream sources: 0.7

• Latest package in upstream distribution: 0.6-3

• Package version in maemo: 0.7-0maemo1

3.3 Package maintenance

TODO: Currently maemo does not have a process for orphaned packages.

3.4 Dependencies

See the discussion about dependencies to Essential packages in section 3.7 below.
4This is meant as a way of saying that the software is “for maemo”, which is acceptable use of the

trademark (see the trademark policy).
5The new ’~’ syntax would achieve the same result, see http://lwn.net/Articles/194664/

Section 3 11(27)

Maemo Packaging Policy Draft

3.5 Virtual packages

Virtual package names intended for generic use SHOULD be commonly agreed and
appear in the list included in the maemo-policy package.

Virtual package names MAY be created privately for use between a certain group of
packages, provided that the chosen name clearly belongs to those packages (using e.g.
foo-theme for package foo, or similar).

3.6 Base system

Maemo doesn’t have a base system in the sense that Debian does, as there is no installer.
In some ways everything that is included in the device (or SDK) images could be
considered a “base system”, but this does not affect packaging.

3.7 Essential packages

Packages marked Essential are always installed in Debian based systems, and accord-
ing to the Debian Policy, other packages should not list dependencies to them unless a
version dependency is needed.6

However, default maemo installations don’t have all of the Debian essential packages,
and therefore binary packages MUST list their direct dependencies also to packages
that are essential in Debian but missing in maemo. (This is especially important to note
when porting packages from Debian to maemo.) These packages are:

• diff

• e2fsprogs

• ncurses-bin

• ncurses-base

• perl-base7

Also, some of the essential packages are provided by BusyBox8 in maemo, but it
doesn’t provide all commands that are included in the corresponding Debian packages.
These commands include e.g. the real bash shell, md5sum (from coreutils), locate
(from findutils), etc. Some of the BusyBox commands also lack options which their
GNU counterparts on a normal Linux desktop provide (such as -iname in find or -o
in uname).

As a result, package installation and uninstallation MUST be tested on a device which
doesn’t have extra software installed, before the package is uploaded to the repositories.
Testing package installation in Scratchbox is not enough, as Scratchbox uses the real
Debian binaries instead of BusyBox.9

6Note that emdebian doesn’t have any essentials. There have been proposals that maemo shouldn’t have
them either; this policy section describes the current state.

7perl-base has been included in some releases but is not guaranteed to stay. Packages need to declare the
dependency.

8See http://www.busybox.net/
9It might be possible to use QEMU system emulation (or a minimal root image with all scratchbox host

tools disabled?) for testing in scratchbox, but no-one has created such an environment yet.

Section 3 12(27)

Maemo Packaging Policy Draft

3.8 Prompting in maintainer scripts

As users do not see the command line, prompting the user MUST be done using GUI
tools.

The following tools are provided in maemo for this:

maemo-confirm-text Present user with text and ask for confirmation10

maemo-select-menu-location Ask user where in the menu hierarchy an application’s
entry should be placed

A package using these MUST depend on maemo-installer-utils (for maemo-confirm-
text) or maemo-select-menu-location.

For more information on the tools, see [Maemo Application Packaging].

All other installation time interaction requirements at SHOULD be first discussed on
the maemo-developers mailing list.

TODO: Would be nice to have a Hildonized GUI frontend for [c]debconf11.

3.9 Separating files into binary packages (new section)

Due to the limited space on available on devices, any files that are not needed at run
time SHOULD either be removed from the binary packages or put in a separate binary
package which is not installed by default. See the following subsections for details.

If this requires packaging the sources differently from the upstream distribution (De-
bian), the packaging changes SHOULD be propagated back to upstream (unless the
changes are incompatible with the upstream policy or practices, as might be the case
e.g. with documentation and localization packaging).

3.9.1 Library and program packages

Libraries SHOULD be packaged separately from programs using them. This also en-
courages better API maintenance.

3.9.2 Development packages

If there are development files (static libraries, headers, test programs etc), they MUST
be in a separate development (-dev) package. Libtool *.la files MUST NOT be in-
cluded in any packages, as they cause problems with indirect library dependencies.

10This can also be used in preinst, e.g. to display a license agreement before the package is unpacked.
11Currently the device doesn’t have either of those available. At least cdebconf has dependencies that

maemo doesn’t have, so some patching would probably be needed. Also unclear how to handle localizations.

Section 3 13(27)

Maemo Packaging Policy Draft

3.9.3 Localization packages

Localization files SHOULD be packaged separately from the programs using them,
and according to language or locale. This both saves flash memory and reduces the
amount of data users have to download when installing or upgrading a package.

TODO: This is still under discussion. An exception could be if the localization files are
very small. Also, rules for localization package naming have not been decided. What
do Debian and Ubuntu do (and is there any debhelper to simplify the task)?

3.9.4 Documentation packages

If documentation is included, it SHOULD be packaged separately. Also, if end-user
documentation is localized, the version for each language or locale SHOULD be pack-
aged as noted in 3.9.3 above.

Developer documentation SHOULD be packaged separately from end-user documen-
tation, as developer documentation shouldn’t need to be installed on end-user devices.

API documentation for libraries SHOULD be auto-generated from the sources12.

3.9.5 Debug packages

All binary packages which contain executable code SHOULD have a corresponding
debug (-dbg) package with debug symbol files for all ELF binaries and shared libraries
in the corresponding binary package.13

Debug symbol files are required because on ARM (unlike e.g. on x86) optimized bi-
naries or libraries cannot14 be debugged without them. Debug symbols also help in
getting more useful performance and memory profiling results.

The debug-pkg-check script from the maemo-debug-scripts package can be used
to verify debug packages. See also section 4.3.2 (Compilation options and stripping)
and [Creating Debug Packages].

TODO: This rule is most important for libraries and plugin based applications. Final
policy on whether to require or just recommend it for other executables is undecided.
As the current Debian build tools cannot build debug packages automatically (unlike
e.g. Ubuntu), all relevant packages need to be modified.

3.9.6 Configuration packages

If the packaged software may have different configurations (e.g. for different regions,
products, customizations, device and SDK environments, etc.), those configurations
SHOULD be packaged separately. Configurations could be simple files in /etc, or
something more complex such as themes or pluggable modules.

12The preferred tools for this are gtk-doc (for anything using or based on GLib) and doxygen (other
sources)

13See the --dbg-package option in dh_strip
14Unless the -fno-omit-frame-pointer GCC option is used. This could be considered a GCC bug as accord-

ing to the GCC manual -O[x] options shouldn’t enable any optimizations which make debugging impossible.

Section 3 14(27)

Maemo Packaging Policy Draft

Configuration packages SHOULD depend on the package that uses them (to avoid
leaving the configuration installed and consuming flash space when the actual software
is uninstalled).

The application package SHOULD only depend on the configuration if it is required
for the software to function. If there can be any number of alternate configurations,
a virtual package SHOULD be used for the dependency. If alternate configurations
cannot coexist, they MUST declare a conflict (using the virtual package if provided).

This section mainly concerns software that is part of the maemo platform, but separat-
ing programs from configurations is often a good practice for other packages as well.
Please consider even building the configuration from a different source package; this
way the whole program doesn’t have to be rebuilt (and possibly approved) for a simple
configuration change, and the user has less packages to download when upgrading.

4 Source packages

4.1 Package relationships

Unlike the run-time environment on maemo devices (see section 3.7), the maemo build
environment (= Scratchbox + Debian dev-kit) provides “host” versions of all the De-
bian essential and build-essential tools, so those SHOULD NOT be listed in the pack-
age build dependencies.

4.2 Changelog: debian/changelog

The main difference between maemo and Debian changelogs is that maemo uses a
different Bugzilla bug tracking system (and there are actually two of them). While bug
fixes in Debian are marked with a “Closes:” entry in the changelog, in maemo they are
marked with “Fixes:”15. A Bug ID of the form of NB#xxxx refers to the Nokia internal
BTS and MB#xxxx refers to the public maemo BTS. These are used for automated
tracking of bug state changes.

The distribution and urgency fields in changelog are currently ignored.

TODO: Bugs in the Garage BTS could be marked with GB#xxxx, although it’s not used
in the current bug tracking tools.

4.3 Main building script: debian/rules

4.3.1 DEB_BUILD_OPTIONS (new section)

The DEB_BUILD_OPTIONS environment variable can be used to control certain fea-
tures when building packages. If a package supports a feature discussed below, it
MUST use the given option for controlling enabling of that feature.

Options currently used by the maemo build infrastructure:

thumb Whether to enable compilation with the ARM thumb instruction set16, see ap-
15Other Debian derived distributions use other keywords, such as "LP:” in Ubuntu.
16For more info, see: http://wiki.debian.org/ArmEabiPort

Section 4 15(27)

Maemo Packaging Policy Draft

pendix B.1 for an example. In most cases this can make the resulting executable
code much smaller (usually ~20%) and some functions faster (usually up to 2x if
the code now fits completely into the CPU instruction cache). Before using this
option in a package, it should be checked that it doesn’t have an adverse effect
on performance critical code, as in some cases it can also make code slower.

vfp Whether to enable compilation with the ARM vfp (limited floating point) instruc-
tion set17, see appendix B.2 for an example. Vfp can make functions doing a lot
of floating point operations much faster (up to 10x). As it can also make code
slower and larger (because currently it cannot be used together with thumb18),
its systematic use is not recommended. Test which functionality in the pack-
age profits most from it and enable vfp only for those objects. This option is
used only when building a package for a CPU architecture supporting vfp (770
doesn’t, later devices do).

nolauncher Request application to be built without maemo-launcher19 support. Note
that if an application supports maemo-launcher, it should be enabled by default,
as it makes the application start up significantly faster and saves memory20.

parallel=N Asks the package to enable GNU Make’s -jN parallel build option to
speed up the package build, see appendix B.3 for an example. If this option
is not set, the package should be built sequentially (e.g. to save memory).

Deprecated options:

maemo-launcher Application should be built with maemo-launcher support. This
should now be the default behavior. See the nolauncher option above.

softfp Use soft floating point. After IT OS 2005, all of the IT OS 2006, 2007 and 2008
toolchains use soft floats by default.

TODO: Proposed/optional build options:

nodocs Asks the package to neither build nor install documentation. Building docu-
mentation (especially with gtk-doc) can take a long time and the documentation
packages are not needed on the device, only in the development environment. It
should be possible to generate the documentation only when needed.

nocheck Asks the package to neither build, run nor install tests. Running tests might
take a long time or require a specific test environment, so it should be possible
to do it only when needed. See the nocheck proposal in the Debian Bugzilla:
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=416450

17Notes about VFP opcodes and accuracy:
http://maemo.org/pipermail/maemo-developers/2005-October/001602.html

18THUMB-2 would allow using thumb mode with vfp instructions, but that’s not supported by current
HW/toolchains.

19See https://stage.maemo.org/svn/maemo/projects/haf/trunk/maemo-launcher/README
20Applications that don’t use Hildon libraries or link to large C++ libraries can be exceptions to this.

Please measure.

Section 4 16(27)

Maemo Packaging Policy Draft

4.3.2 Compilation options and stripping (new section)

The Debian Policy “Binaries” section recommends optimizing and debug symbols:
http://www.debian.org/doc/debian-policy/ch-files.html#s10.1

In maemo these rules are more strict:

• Code MUST be compiled with optimization to produce a faster or smaller ex-
ecutable (unless impossible because of compiler bugs). Generally -O2 or -Os
should be used, or -O3 if that works better. If the compiler crashes when full
optimization is enabled, -O1 can be used instead.

• If sources are freely available, they MUST be compiled so that the resulting
binaries contain debug symbols (-g compiler option(s)).

• The resulting binaries and libraries MUST be stripped and the debug symbols
separated to debug symbol files (and put into -dbg debug packages, see section
3.9.5).

• If sources are not available for a library used by another component, or if the
full debug information cannot be provided e.g. for contract reasons, that library
SHOULD either be compiled with -fno-omit-frame-pointer or provide at
least minimal debug symbols21 so that problems in other components can be
debugged through that library.

4.4 Original sources (new section)

When packaging upstream sources, the original sources SHOULD be provided sepa-
rately from the debian/ directory (and patches, etc.) in an .orig.tar.gz file. (This
is not different from Debian but is currently not followed by all maemo packages. This
policy may be changed to a “MUST” severity later, i.e. non-compliant packages will
not be accepted.)

5 Control files and their fields

5.1 Package control files: debian/control

Distribution, priority and urgency fields are currently ignored. To be safe, use optional
for priority unless there’s a very good reason not to.

See the notes for other fields below.

5.1.1 Maintainer

If an upstream package is modified for maemo, the Maintainer field MUST be changed
from the original (unless the original maintainer also maintains the maemo package).

The original maintainer MAY be marked with the field XSBC-Original-Maintainer.

21The .debug_frame section is enough for this, see [Creating Debug Packages] for more info

Section 5 17(27)

Maemo Packaging Policy Draft

5.1.2 Section

See the discussion in 2.2 (Sections).

5.1.3 Architecture

Architectures currently supported by maemo are i386 and armel (in addition to any,
all and source).

Note: There’s also a maemo specific XS-scratchbox-architecture field which can
have the value uarm to indicate that the package is to be compiled with the uClibc
toolchain instead of Glibc. This is used only for building the kernel and initfs, and may
be phased out if they switch to using Glibc.

5.1.4 Depends

Packages MUST depend only on their direct dependencies, which MUST be generated
automatically whenever possible (using ${misc:Depends}, ${shlibs:Depends} etc.
— see “man debhelper”)

5.1.5 Pre-depends

Pre-dependencies should be avoided when possible, and any needs SHOULD first be
discussed on the maemo-developers mailing list.

5.1.6 Standards-Version

The Standards-Version field is for the Debian Policy version (latest22 is v3.7.2.2).

TODO: A separate XBS-Standards-Version field could be defined for specifying the
maemo packaging policy version. Currently this is not done yet, as the policy is still a
draft, and we don’t have tests for maemo specific policy compliance.

5.1.7 Installed-Size

Note that a package may take less space than indicated by this (automatically calcu-
lated) field if the JFFS-2 filesystem is able to compress the files.

22Latest when the work on this Policy draft was started. 3.7.3.0 has been released since then (and this
document should be updated).

Section 6 18(27)

Maemo Packaging Policy Draft

6 Package maintainer scripts and installation procedure

6.1 Differences between scratchbox and device environments (new
section)

Maintainer scripts MUST take into account the differences of the device and scratchbox
environments, and behave sensibly in both. The differences SHOULD NOT cause
unnecessary warnings to be printed.

If a script needs to detect whether it’s running in scratchbox, currently one way to do
so is to test the presence of /targets/links/scratchbox.config (although this is
not guaranteed to work in future versions of scratchbox).

init.d scripts MUST either be invoked using invoke-rc.d, or only run directly if the
status returned by policy-rc.d allows it. (In practice the policy is such that services
will not be started in scratchbox.)

GConf values need to be handled directly23 in scratchbox, since gconfd (or DBus which
is used for communicating with gconfd) is not running.

Please also note the shell commands available for scripts, as discussed in sections 3.7
(Essential packages) and 10.3 (Scripts).

TODO: Some general description of services available during package installation (in
scratchbox or device) could be useful. Probably rather a topic for some other document,
add link here if created.

6.1.1 Lifeguard reboots

Note that the lifeguard will reboot maemo devices if certain processes exit. Packages
must take care that they do not cause such reboots during installation (either by restart-
ing a service or by causing clients of a service to exit), as this could result in a broken
package database. (This is mainly an issue for upgrades or replacements for system
packages, as no others are watched by the lifeguard by default.) Package installation
and upgrades MUST be tested in a live system (on an actual device).

6.2 Controlling terminal for maintainer scripts

Maintainer scripts do not have a controlling terminal when running on the device, and
are only able to interact with the user through a GUI tool. See section 3.8 (Prompting
in maintainer scripts).

7 Declaring relationships between packages

Like in Debian Policy. (Note, however, the differences in Essential packages, as dis-
cussed in section 3.7.)

23See the --direct, --config-source and --makefile-install-rule options in gconftool-2

Section 8 19(27)

Maemo Packaging Policy Draft

8 Shared libraries

Like in Debian Policy.

9 The operating system

9.1 File system hierarchy

TODO: This section has not been written yet.

9.2 Users and groups

The “user” account has the UID and GID 29999 in maemo. The base useradd utility
does not handle policy issues (the adduser wrapper is not available in maemo), and
therefore dynamically added users and groups (including system users) currently go
into the 30000–59999 range which is reserved in Debian. There is currently no decision
to change this, but the numeric ID’s should not be depended on in any way.

To maintain compatibility, packages MUST NOT allocate UID’s or GID’s in the global
0–99 and 60000–64999 ranges except as allowed in Debian.

TODO: Possibly notes about sudo or users in scratchbox

9.3 System run levels and init.d scripts

See the notes about invoke-rc.d and scratchbox in section 6.1.

9.4 Console messages from init.d scripts

Maemo has no strict requirements or policy for console messages, as the user doesn’t
normally see them. For consistency (and special circumstances such as debugging) it’s
still recommended that packages follow the guidelines of the Debian Policy.

9.5 Cron jobs

Currently cron is not available in maemo.

9.6 Menus

Applications in maemo are listed in the application menu if they provide a .desktop
file in the /usr/share/applications/hildon directory. Files added to or removed
from this directory are detected automatically.

Section 9 20(27)

Maemo Packaging Policy Draft

By default the entry is shown in the Extras menu if no other location has been selected
previously. A package can use the maemo-select-menu-location utility24 to provide
a different default and let the user select the location. This SHOULD only be done on
the first installation (not upgrades).

Internally the menu structure is defined in /etc/xdg/menus/applications.menu
and ${HOME}/.osso/menus/applications.menu25, but packages SHOULD NOT
modify these files directly.

Note that the menu structure is completely different from Debian. Installing an unmod-
ified Debian package with a proper .desktop file under /usr/share/applications
will result in the application being displayed in the “Extras” category. Maemo also
doesn’t provide (and has currently no use for) the menu tools in the xdg-utils package.

9.7 Multimedia handlers

Maemo uses the freedesktop.org standards26 for registering MIME types and handlers.
Please see [Maemo Tutorial] for an example.

The MIME utilities from the xdg-utils package are not available in maemo.

TODO: Document here what packages need to do w/ MIME types and in postinst/postrm
etc. For now please refer to the tutorial. (Also appendix D?)

9.8 Registering Documents using doc-base

The Debian doc-base package is not used.

Please see [Maemo Documentation Framework] for how to create help files with the
maemo help framework.

10 Files

10.1 Binaries

As in Debian, but note the policy on build options, optimization and stripping in sec-
tions 4.3.1 and 4.3.2.

10.2 Libraries

Note the policy on .la files in section 3.9.2.

24See [Maemo Application Packaging]
25Following the freedesktop.org menu specification (http://standards.freedesktop.org/

menu-spec/latest/), but hildon-desktop only implements a subset of it.
26http://standards.freedesktop.org/shared-mime-info-spec/shared-mime-info-spec-latest.

html, http://standards.freedesktop.org/desktop-entry-spec/latest/ar01s07.html

Section 10 21(27)

Maemo Packaging Policy Draft

10.3 Scripts

The /bin/sh on maemo devices is provided by BusyBox, and (unlike in Debian) the
Bash shell is not available by default. Therefore, all shell scripts MUST work with a
POSIX compatible shell.

Perl scripts SHOULD be replaced with POSIX compatible shell scripts if possible. (If a
package has to use perl scripts, it MUST depend on perl-base, as noted in 3.7 (Essential
packages).)27

10.4 Configuration files

Applications that store configuration options elsewhere in the user’s home directory
than in $HOME/MyDocs SHOULD add a configuration file telling the maemo backup
system what data needs to be backed up and restored. If the application’s configuration
file format changes between releases, its restore script needs to be able to handle the
older format appropriately. See [Maemo Tutorial] for more information.

Note that user configuration files under $HOME, and all GConf settings except defaults
set in schemas, are removed if the user restores original device settings using the Con-
trol panel.

As also recommended in the Debian Policy, packages SHOULD NOT place files in
/etc/skel: there is no good way to make them available to the existing user (and on
maemo devices new users are normally not created).

10.5 Log files

Due to limited space, log files SHOULD be kept minimal if used at all. If a log file
causes the device to run out of disk space, it can make the device unusable and force
the user to reflash.

Log files should preferably be in a place where the user can remove them (through the
UI), and they SHOULD NOT grow without bounds.

The logrotate package is not available (and simple rotation is not necessarily enough to
limit the size of log files, depending on the logging behavior).

TODO: Should packages always remove their logs in postrm, define policy on this?

TODO: User should probably be able to decide whether to enable logging (at least for
potentially large logs). This is more of a UI issue and not necessarily in the scope for
policy.

11 Customized programs

11.1 Daemons

Maemo devices don’t (by default) have any network services or an inetd daemon.
Anything installed afterward SHOULD conform to Debian.

27When porting packages from Ubuntu, note that python isn’t essential in maemo either, and packages
using it need to declare the dependency.

Section 11 22(27)

Maemo Packaging Policy Draft

TODO: Currently there is no formal process for requesting maemo-specific additions
to /etc/services, /etc/protocols or /etc/rpc. Any needs for such should be
discussed on the maemo-developers list.

11.2 Editors and pagers

By default the EDITOR or PAGER environment variables do not have a value (and the
/usr/bin aliases specified in the Debian Policy do not exist).

12 Documentation

12.1 Manual pages and info documentation

Maemo devices don’t have the utilities needed for viewing manual or info pages. As
noted in 3.9.4, documentation should be packaged separately and installing it should
be optional.

12.2 Preferred documentation formats

Documentation in well integrated maemo applications SHOULD be in the format used
by the maemo help framework, see [Maemo Documentation Framework].

Note that although HTML documentation can be viewed in the browser, users would
typically not be able to find it in /usr/share/doc (as used in Debian), since those
directories are not visible in the File Manager.

12.3 Examples

Tests and examples are not needed for running the programs, so they SHOULD be in a
separate package which the user does not have to install.

Section 12 23(27)

Maemo Packaging Policy Draft

A Common problems

TODO: Common problems in maemo packages. Can also be in the wiki

B DEB_BUILD_OPTIONS examples

B.1 Thumb option

Add to debian/rules these lines:

Use soft-float and thumb mode if it enabled.
ifneq (,$(findstring thumb,$(DEB_BUILD_OPTIONS)))
CFLAGS += -mthumb
endif

This change can be validated after build by checking the binaries with the size com-
mand (should be smaller), or by checking the addresses of function symbols which
should be odd in THUMB mode — e.g.:
readelf -s my-binary | egrep ’: [0-9a-f]+[13579bdf] .*FUNC’

B.2 VFP option

Add to debian/rules these lines:

Use hardware floating point
ifneq (,$(findstring vfp,$(DEB_BUILD_OPTIONS)))
CFLAGS += -mfpu=vfp -mfloat-abi=softfp
endif

B.3 Parallel option

TODO: When this option has been added to the Debian policy, add link here to an
appropriate section. For now, see the discussion in the following Debian policy bug:
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=209008

B.4 Examples of nolauncher, nodocs and nocheck

TODO.

C Example of creating -dbg packages

TODO: Needed? (Already described in [Creating Debug Packages])

Section D 24(27)

Maemo Packaging Policy Draft

D Maintainer script utilities

TODO: List and briefly document the maemo-specific tools used in maintainer scripts.

E List of essential packages

TODO: A complete list of essential packages in maemo should be created and included
in the maemo-policy package. A copy can be inserted here. Currently please refer to
Debian and the differences described in section 3.7.

F List of virtual packages

TODO: The list of virtual packages in the maemo-policy package (when it has been
created) can be inserted here.

G Lintian overrides

TODO: The differences between what the Debian lintian tool reports and what
should be reported for maemo should be analyzed. Overrides and/or additional checks
could be provided in the maemo-policy package, and possibly also listed here.

Section G 25(27)

References

[Debian Policy] Debian Policy Manual:
http://www.debian.org/doc/
debian-policy/

[Debian New Maintainers’ Guide] Debian New Maintainer’s Guide:
http://www.debian.org/doc/manuals/
maint-guide/

[Debian Social Contract] Debian Social Contract:
http://www.debian.org/social_contract

[Maemo Application Packaging] Making maemo Application Packages:
http://maemo.org/development/
documentation/how-tos/4-x/making_
application_packages.html

[Quick Start Guide] Maemo Quick Start Guide:
http://maemo.org/
development/documentation/
maemo-quick-start-guide.pdf

[Maemo Coding Guidelines] Maemo coding style and programming guide-
lines:
http://maemo.org/development/
documentation/how-tos/4-x/maemo_
coding_style_and_programming_
guidelines.html

[Maemo Tutorial] Maemo (Developer’s) Tutorial:
http://maemo.org/development/
documentation/tutorials/maemo_4-0_
tutorial.html

[Maemo Trademark Policy] Maemo trademark usage:
http://maemo.org/intro/trademarks/
trademark_usage_guidelines.html

[Maemo Documentation Framework] Maemo Documentation Framework:
http://maemo.org/development/
documentation/how-tos/4-x/help_
framework_howto.html

[FHS] Filesystem Hierarchy Standard:
http://www.pathname.com/fhs/

[Creating Debug Packages] Creating debug packages:
http://maemo.org/development/
documentation/how-tos/4-x/how_to_
make_a_debian_debug_package.html

26

[Maemo Policy wiki] Maemo packaging policy Wiki, a part of the
policy change and documentation process:
TODO: Not created yet

27

