Maemo Diablo Asynchronous GLib D-Bus

Training Material

February 9, 2009

Contents

1 Asynchronous GLib D-Bus

1.1 Asynchronicity in D-Busclients

1.2 Slow testserver

1.3 Asynchronous method calls using stubs

1.4 Problems with asynchronicity

1.5 Asynchronous method calls using GLib wrappers

AN DNDN

Chapter 1

Asynchronous GLib D-Bus

1.1 Asynchronicity in D-Bus clients

So far all the RPC method calls that we’ve implemented have been "fast" in that
their execution does not depend on access to slow services or external resources.
In real life however, it is quite likely that you won’t be able to provide some
service immediately, but will have to wait for some external service to complete
before completing your own method call.

The GLib wrappers provide a version of doing method calls where the call
will be launched (almost) immediately, and a callback will be executed when
the method call will return (either with a return value, or an error).

Using the asynchronous wrappers is important when your program needs
to update some kind of status, or be reactive to the user (via a GUI or other
interface). Otherwise the program would block waiting for the RPC method
to return, and won't be able to refresh the GUI or screen when required. An
alternative solution would be to use separate threads which would run the syn-
chronous methods, but synchronisation between threads will become an issue
and debugging threaded programs is much harder than single threaded ones.
Also, implementation of threads might be sub optimal in some environments.
These are the reasons why we won’t be covering the thread scenario here.

We will simulate slow running RPC methods by adding a delay into the
server method implementations so that it will become clear why asynchronous
RPC mechanisms are important. As signals by their nature are asynchronous
as well, they don’t add anything to our example this time. In order to simplify
the code listings, we drop signal support from the asynchronous clients (the
server still contains them and will emit them).

1.2 Slow test server

The only change on the server side is the addition of delays into each of the
RPC methods (setvaluel, setvalue2, getvaluel and getvalue2). This delay
is added to the start of each function as follows:

/* How many microseconds to delay between each client operation. */
#define SERVER_DELAY_USEC (5*1000000UL)

/*... Listing cut for brevity ...%*/

gboolean value_object_setvaluel(ValueObject* obj, gint valueln,
GError** error) {

dbg("Called (valueIn=%d)", valueln);
g_assert(obj != NULL);

dbg("Delaying operation");
g_usleep (SERVER_DELAY_USEC);

/% Compare the current value against old one. If they’re the same,
we don’t need to do anything (except return success). */
if (obj->valuel != valuelIn) {

Listing 1.1: Slowing down setvaluel (glib-dbus-async/server.c)

Building the server is done as before, but we’ll notice the delay when we
call an RPC method:

[sbox-DIABLO_X86: ~/glib-dbus-async] > run-standalone.sh ./server &
server:main Connecting to the Session D-Bus.
server:main Registering the well-known name (org.maemo.Platdev_ex)
server:main RequestName returned 1.
server:main Creating one Value object.
server:value_object_class_init: Called
server:value_object_class_init: Creating signals
server:value_object_class_init: Binding to GLib/D-Bus
server:value_object_class_init: Done
server:value_object_init: Called
server:main Registering it on the D-Bus.
server:main Ready to serve requests (daemonizing).
server: Not daemonizing (built with NO_DAEMON-build define)
[sbox-DIABLO_X86: ~/glib-dbus-async] > time run-standalone.sh dbus-send \
--type=method_call --print-reply --dest=org.maemo.Platdev_ex \
/GlobalValue org.maemo.Value.getvaluel
server:value_object_getvaluel: Called (internal valuel is 0)
server:value_object_getvaluel: Delaying operation
method return sender=:1.54 -> dest=:1.56
int32 0

real Om5.066s
user Om0.004s
sys Om0.056s

Testing the delayed server version

Above we use the time shell built-in command. It will run the given com-
mand while measuring the wall clock time (aka real time) and time used while
executing the code and system calls. In our case, we're only interested in the
real time. The method call will delay for about 5 seconds as it should. The
delay (even if given with microsecond resolution) is always approximate and
longer than the requested amount. Exact delay will depend on many factors,
most of which you cannot influence directly.

We'll next experiment with a likely scenario where another method call
comes along while the first one is still being executed. This is best tested by
just repeating the sending command twice, but running the first one on the
background (so that the shell doesn’t wait it to complete first). The server is
still running on the background from the previous test:

[sbox-DIABLO_X86: ~/glib-dbus-async] > time run-standalone.sh dbus-send \
--type=method_call --print-reply --dest=org.maemo.Platdev_ex \
/GlobalValue org.maemo.Value.getvaluel &

[2] 17010

server:value_object_getvaluel: Called (internal valuel is 0)
server:value_object_getvaluel: Delaying operation

[sbox-DIABLO_X86: ~/glib-dbus-async] > time run-standalone.sh dbus-send \
--type=method_call --print-reply --dest=org.maemo.Platdev_ex \
/GlobalValue org.maemo.Value.getvaluel

method return sender=:1.54 -> dest=:1.57

int32 0

real Om5.176s
user Om0.008s
sys Om0.092s
server:value_object_getvaluel: Called (internal valuel is 0)
server:value_object_getvaluel: Delaying operation
method return sender=:1.54 -> dest=:1.58
int32 0

real Om9.852s
user Om0.004s
sys Om0.052s

Delays accumulating

What we can see from the above output is that the first client is delayed for
about 5 seconds, while the second client (which was launched shortly after the
first) is already delayed by much longer period. This is to be expected as the
server can only process one request at a time and will delay each request by 5
seconds.

We'll cover some server concurrency issues later, but for now, we want our
clients to be able to continue their "normal work" while they wait for the re-
sponse from the server. Since we're dealing with example code, "normal work"
for our clients will be just waiting for the response, while blocking on incoming
events (converted into callbacks). However, if the example programs would
be graphical, the asynchronous approach would make it possible for them to
react to user input. D-Bus by itself does not support cancellation of method
calls once processing has started on the server side, so adding cancellation sup-
port would require a separate method call to the server. Since the server only
handles one operation at a time, the current server cannot support method call
cancellations at all.

1.3 Asynchronous method calls using stubs

When you run the glib-bindings-tool, it will already generate the necessary
wrapping stubs to support launching asynchronous method calls. What is then
left to do is implementing the callback functions correctly, processing the return
errors and launching the method call.

/* Pull in the client stubs that were generated with
dbus-binding-tool */
#include "value-client-stub.h"

Listing 1.2: The client still pulls the generated stub code in like before (glib-
dbus-async/client-stubs.c)

The client has been simplified so that it now only operates on valuel. The
callback that will be called from the stub code is presented next:

This function will be called when the async setvaluel will either
* complete, timeout or fail (our server however does not signal
errors, but the client D-Bus library might). When this example

* program is left running for a while, you will see all three cases.

* The prototype must match the one generated by the dbus-binding-tool
(org_maemo_Value_setvaluel_reply).

Since there is no return value from the RPC, the only useful
parameter that we get is the error object, which we’ll check.
* If error is NULL, that means no error. Otherwise the RPC call
failed and we should check what the cause was.

*/
static void setValuelCompleted(DBusGProxy* proxy, GError *error,
gpointer userData) {

g_print (PROGNAME ":%s:setValuelCompleted\n", timestamp());
if (error != NULL) {
g_printerr (PROGNAME " ERROR: %s\n", error->message);
/* We need to release the error object since the stub code does
not do it automatically. */
g_error_free(error);
} else {
g_print (PROGNAME " SUCCESS\n") ;
}
}

Listing 1.3: Callback to use when the RPC method completes (glib-dbus-
async/client-stubs.c)

Since the method call does not return any data, the parameters for the call-
back are at minimum (you’ll always get those three). Handling errors must be
done within the callback since errors could be delayed from the server and not
visible immediately at launch time. Note that the callback will not terminate
the program on errors. We do this on purpose in order to demonstrate common
asynchronous problems below. The timestamp function is a small utility func-
tion to return a pointer to a string representing the number of seconds since
the program started (useful to visualise the order of the different asynchronous
events below).

* This function will be called repeatedly from within the mainloop
timer launch code.

* It will launch asynchronous RPC method to set valuel with ever
increasing argument.

*/
static gboolean timerCallback (DBusGProxy* remoteobj) {

/* Local value that we’ll start updating to the remote object. */
static gint localValuel = -80;

/* Start the RPC.
This is done by calling the stub function that will take the new
value and the callback function to call on reply getting back.

The stub returns a DBusGProxyCall object, but we don’t need it
so we’ll ignore the return value. The return value could be used

to cancel a pending request (from client side) with
dbus_g_proxy_cancel_call. We could also pass a pointer to
user-data (last parameter), but we don’t need one in this example.
It would normally be used to "carry around" the application state.
-..‘/
g_print (PROGNAME ":%s:timerCallback launching setvaluel\n",
timestamp ());
org_maemo_Value_setvaluel_async(remoteobj, localValuel,
setValuelCompleted, NULL);
g_print (PROGNAME ":%s:timerCallback setvaluel launched\n",
timestamp ());

/% Step the local value forward. */
localValuel += 10;

/* Repeat timer later. */
return TRUE;
}

Listing 1.4: The timer callback that will now use the async launching stub code
(glib-dbus-async/client-stubs.c)

Using the stub code is rather simple. For each generated synchronous
version of a method wrapper, there will also be a _async version of the call. The
main difference with the parameters is the removal of the GError pointer (since
errors will be handled in the callback) and addition of the callback function to
use when the method will complete, time out or encounter an error.

The main function remains the same from previous client examples (a once
per second timer will be created and run from the mainloop until the program
is terminated).

1.4 Problems with asynchronicity

When the simple test program is built and run, we’ll see that everything starts
off quite well. But at some point problems start to appear:

[sbox-DIABLO_X86: ~/glib-dbus-async] > make client-stubs

dbus-binding-tool --prefix=value_object --mode=glib-client \
value-dbus-interface.xml > value-client-stub.h

cc -I/usr/include/dbus-1.0 -I/usr/lib/dbus-1.0/include \
-I/usr/include/glib-2.0 -I/usr/lib/glib-2.0/include -g -Wall \
-DG_DISABLE_DEPRECATED -DNO_DAEMON -DPROGNAME=\"client-stubs\" \
-c client-stubs.c -o client-stubs.o

cc client-stubs.o -o client-stubs -ldbus-glib-1 -1ldbus-1 -lgobject-2.0 -1glib-2.0

[sbox-DIABLO_X86: ~/glib-dbus-async] > run-standalone.sh ./client-stubs

client-stubs:main Connecting to Session D-Bus.

client-stubs:main Creating a GLib proxy object for Value.

client-stubs: 0.00:main Starting main loop (first timer in 1s).

client-stubs: 1.00:timerCallback launching setvaluel

client-stubs: 1.00:timerCallback setvaluel launched

server:value_object_setvaluel: Called (valueIn=-80)

server:value_object_setvaluel: Delaying operation

client-stubs: 2.00:timerCallback launching setvaluel

client-stubs: 2.00:timerCallback setvaluel launched

client-stubs: 3.01:timerCallback launching setvaluel

client-stubs: 3.01:timerCallback setvaluel launched

client-stubs: 4.01:timerCallback launching setvaluel

client-stubs: 4.01:timerCallback setvaluel launched

client-stubs: 5.02:timerCallback launching setvaluel

client-stubs: 5.02:timerCallback setvaluel launched

server:value_object_emitSignal: Emitting signal id 0, with message ’valuel’

server:value_object_setvaluel: Called (valueIn=-70)

server:value_object_setvaluel: Delaying operation

client-stubs: 6.01:setValuelCompleted

client-stubs SUCCESS

client-stubs: 6.02:timerCallback launching setvaluel

client-stubs: :timerCallback setvaluel launched

client-stubs: 7.02:timerCallback launching setvaluel

client-stubs: 7.02:timerCallback setvaluel launched

NNOoO O
=1
)

client-stubs:25.04:timerCallback launching setvaluel
client-stubs:25.04:timerCallback setvaluel launched
server:value_object_emitSignal: Emitting signal id 0, with message ’valuel’
server:value_object_setvaluel: Called (valueIn=-30)
server:value_object_setvaluel: Delaying operation
client-stubs:26.03:setValuelCompleted

client-stubs SUCCESS

client-stubs:30.05:timerCallback launching setvaluel
client-stubs:30.05:timerCallback setvaluel launched

client-stubs:36.04:setValuelCompleted

client-stubs ERROR: Did not receive a reply. Possible causes include:
the remote application did not send a reply, the message bus security policy
blocked the reply, the reply timeout expired, or the network connection was
broken.

server:value_object_emitSignal: Emitting signal id 0, with message ’valuel’
server:value_object_setvaluel: Called (valueIn=-10)
server:value_object_setvaluel: Delaying operation
client-stubs:36.06:timerCallback launching setvaluel
client-stubs:36.06:timerCallback setvaluel launched
client-stubs:37.04:setValuelCompleted

client-stubs ERROR: Did not receive a reply. Possible causes include:
the remote application did not send a reply, the message bus security policy
blocked the reply, the reply timeout expired, or the network connection was
broken.

[Ctrl+c]

[sbox-DIABLO_X86: ~/glib-dbus-async] >

server:value_object_emitSignal: Emitting signal id 0, with message ’valuel’
server:value_object_setvaluel: Called (valueIn=30)
server:value_object_setvaluel: Delaying operation
server:value_object_emitSignal: Emitting signal id 0, with message ’valuel’
server:value_object_setvaluel: Called (valueIn=40)
server:value_object_setvaluel: Delaying operation
server:value_object_emitSignal: Emitting signal id 0, with message ’valuel’
server:value_object_setvaluel: Called (valueIn=50)
server:value_object_setvaluel: Delaying operation
server:value_object_emitSignal: Emitting signal id 0, with message ’valuel’

Building, running, and .. problems

What happens above is rather subtle. The timer callback in the client will
launch once per second and do the RPC method launch. The server however
still has the 5 second delay for each method call in it. We see the successive
launches going on without any responses for a while. The first response comes
back at about 6 seconds since client has started. At this point the server already
has 4 other outstanding method calls that it hasn’t handled. Slowly the method
calls are accumulating at the server end and it doesn’t deal with them quickly
enough to satisfy the client.

After about 30 seconds, we start seeing the setValuelCompleted callback
invoked, but with the method call failing. We have managed to trigger the
method call timeout mechanism. After this point, all the method calls that
have accumulated into the server (into a message queue) will fail in the client,
since they all will now return late, even if the server actually does handle them.

Once we terminate the client, we’ll see that the server is still happily contin-
uing serving the requests, oblivious to the fact that there is no client to process
the responses.

The above test demonstrates quite brutally that you need to design your
services properly so that there is a clearly defined protocol what to do in case a
method call is delayed. You also might want to design a notification protocol
to tell clients that something has completed, instead of forcing them to time
out. Using D-Bus signals is one way, but you need to take care not to generate
signals when no one is listening for them. This can be done by only sending
signals when an long operation will finish (assuming you have documented
this as part of your service description).

One partial fix would be for the client to track and make sure that only one
method call to one service it outstanding at any given time. So instead of just
blindly launching the RPC methods, it should defer launching if it hasn’t yet
got a response from the server (and the call hasn’t timed out).

This fix is not complete however, since the same problem will manifest
itself once there are multiple clients running in parallel and requesting the
same methods. The proper fix is to make the server capable of serving multiple
requests in parallel. Some hints on how to do this are presented later on.

1.5 Asynchronous method calls using GLib wrap-
pers

Sometimes the interface XML will be missing, so you cannot run the dbus-bindings-tool
to generate the stub code. The GLib wrappers are generic enough for you to be
able to build your own method calls when necessary.
It is often easiest to start with some known generated stub code to see which
parts you could possibly reuse (with modifications). This is what we’ll do last,
in order to make a version of the asynchronous client that will work without
the stub generator.
We start by taking a peek at the stub generated code for the setvaluel call
(when used asynchronously):

typedef void (*org_maemo_Value_setvaluel_reply) (DBusGProxy *proxy,
GError *error,
gpointer userdata);

static void

org_maemo_Value_setvaluel_async_callback (DBusGProxy *proxy,
DBusGProxyCall *call,
void *user_data)

DBusGAsyncData *data = user_data;

GError *error = NULL;

dbus_g_proxy_end_call (proxy, call, &error, G_TYPE_INVALID);

(*(org_maemo_Value_setvaluel_reply)data->cb) (proxy, error,
data->userdata);

return;

3

static

#ifdef G_HAVE_INLINE

inline

#endif

DBusGProxyCall™

org_maemo_Value_setvaluel_async (DBusGProxy *proxy,
const gint IN_new_value,

org_maemo_Value_setvaluel_reply callback,

gpointer userdata)

DBusGAsyncData *stuff;

stuff = g_new (DBusGAsyncData, 1);

stuff->cb = G_CALLBACK (callback);

stuff->userdata = userdata;

return dbus_g_proxy_begin_call (
proxy, "setvaluel", org_maemo_Value_setvaluel_async_callback,
stuff, g_free, G_TYPE_INT, IN_new_value, G_TYPE_INVALID);

}

Listing 1.5: Generated stub code for the asynchronous setvaluel (glib-dbus-
async/value-client-stub.h)

What is notable in the code snippet above is that the _async method will
create a temporary small structure that will hold the pointer to the callback func-
tion, and a copy of the userdata pointer. This small structure will then be passed
to dbus_g_proxy_begin_call along with the address of the generated callback
wrapper function (org_maemo_Value_setvaluel_async_callback). The GLib
async launcher will also take a function pointer to a function to use when the
supplied "user-data" (in this case the small structure) will need to be disposed
(after the call). Since it uses g_new to allocate the small structure, it passes
g_free as the freeing function. Next comes the argument specification for the
method call, which obeys the same rules as the LibOSSO ones before.

On RPC completion, the generated callback will be invoked, and it will get
the real callback function pointer and the userdata as its "user-data" parameter.
It will first collect the exit code for the call with dbus_g_proxy_end_call and
unpacks the data and invokes the real callback. After returning, the GLib
wrappers (which called the generated callback) will call g_free to release the
small structure and the whole RPC launch will end.

We next re-implement pretty much the same logic, but also dispose of the

small structure, since we are going to implement our callback directly, not as a
wrapper-callback (it also saves us from doing one memory allocation and one
free).

We'll start with the RPC asynchronous launch code:

/7‘:'«':

O

s‘t/

sta

/

S

/

g
d

9

/,.‘

1

/

r

3

This function will be called repeatedly from within the mainloop
timer launch code.

It will launch asynchronous RPC method to set valuel with ever
increasing argument.

tic gboolean timerCallback (DBusGProxy* remoteobj) {

* Local value that we’ll start updating to the remote object. */
tatic gint localValuel = -80;

* Start the first RPC.
The call using GLib/D-Bus is only slightly more complex than the
stubs. The overall operation is the same. */

_print (PROGNAME ":timerCallback launching setvaluel\n");

bus_g_proxy_begin_call (remoteobj,
/* Method name. */
"setvaluel",
/* Callback to call on "completion". */
setValuelCompleted,
/* User-data to pass to callback. */
NULL,

/* Function to call to free userData after
callback returns. */

NULL,

/* First argument GType. */

G_TYPE_INT,

/* First argument value (passed by value) */
localValuel,

/* Terminate argument list. */
G_TYPE_INVALID);

_print (PROGNAME ":timerCallback setvaluel launched\n");
* Step the local value forward. */

ocalValuel += 10;

* Repeat timer later. */

eturn TRUE;

Listing 1.6: Launching RPC methods using GLib functions without stubs (glib-
dbus-async/client-glib.c)

And the callback that will be invoked on method call completion, timeouts

Or errors:

/a’t*

This function will be called when the async setvaluel will either
complete, timeout or fail (same as before). The main difference in
using GLib/D-Bus wrappers is that we need to "collect" the return
value (or error). This is done with the _end_call function.

Note that all callbacks that are to be registered for RPC async

notifications using dbus_g_proxy_begin_call must follow the
following prototype: DBusGProxyCallNotify

10

*/

static void setValuelCompleted(DBusGProxy* proxy,
DBusGProxyCall* call,
gpointer userData) {

/% This will hold the GError object (if any). */
GError* error = NULL;

g_print (PROGNAME ":setValuelCompleted\n");

/* We next need to collect the results from the RPC call.
The function returns FALSE on errors (which we check), although
we could also check whether error-ptr is still NULL. */

if (!dbus_g_proxy_end_call (proxy,

/% The call that we’re collecting. */

call,

/* Where to store the error (if any). */

&error,

/* Next we list the GType codes for all
the arguments we expect back. In our
case there are none, so set to
invalid. */

G_TYPE_INVALID)) {

/* Some error occurred while collecting the result. */
g_printerr (PROGNAME " ERROR: %s\n", error->message);
g_error_free(error);
} else {
g_print (PROGNAME " SUCCESS\n");
}
}

Listing 1.7: Handling the method response and ending the async RPC call
(glib-dbus-async/client-glib.c)

We no longer need the generated stub code, so the dependency rules for the
stubless GLib version will also be somewhat different:

client-glib: client-glib.o

$(CC) $2 -o $@ $(LDFLAGS)
Note that the GLib client doesn’t need the stub code.
client-glib.o: client-glib.c common-defs.h

$(CC) $(CFLAGS) -DPROGNAME=\"$(basename $@)\" -c $< -o $@

Listing 1.8: Simpler dependencies for the stub code (glib-dbus-async/Makefile)

Since the example program logic hasn’t changed from the previous version,
testing client-glib is not presented here (you are of course free to test it your-
self since the source code contains the fully working program). This version
of the client will also launch the method calls without waiting for previous
method calls to complete.

11

	Asynchronous GLib D-Bus
	Asynchronicity in D-Bus clients
	Slow test server
	Asynchronous method calls using stubs
	Problems with asynchronicity
	Asynchronous method calls using GLib wrappers

