Maemo Diablo Implementing and using
D-Bus signals

Training Material

February 9, 2009

Contents

1 Implementing and using D-Bus signals

D-Bus Signal properties
Declaring signals in the interface XML
Emitting signals froma GObject.
Catching signals in GLib/D-Bus clients

1.1
1.2
1.3
1.4
1.5

Tracing D-Bus signals

Chapter 1

Implementing and using
D-Bus signals

1.1 D-Bus Signal properties

Doing remote method invocations over the D-Bus is only one half of D-Bus
capabilities. As was noted before, D-Bus also supports a _broadcast_ method
of communication, which is also _asynchronous_. This mechanism is called a
signal (in D-Bus terminology) and is useful when you need to notify a lot of
receivers about a state change that could affect them. Some examples where
signals could be useful are notifying a lot of receivers if the system is being shut
down, network connectivity has been lost and similar system wide conditions.
This way, the receivers do not need to poll for the status continuously.

However, signals are not the solution to all problems. If a receiver is not
processing its D-Bus messages quickly enough (or there just are too many),
a signal might get lost on its way to the receiver. There might also be other
complications, as with any RPC mechanism. For these reasons, if your appli-
cation requires extra reliability, you will need to think on how to arrange it.
One possibility would be to occasionally check the state that your application
is interested in, assuming it can be checked over the D-Bus. Just do not do it too
often (once a minute or less often and try to do it only when your application is
already active for other reasons). This model will lead to reduction in battery
life, so think hard before adopting it.

Signals in D-Bus are able to carry information. Each signal has its own
name (specified in the interface XML) as well as "arguments". In signal’s case,
the argument list is actually just a list of information that is passed along the
signal, and shouldn’t be confused with method call parameters (although both
are delivered in the same manner).

Signals do not "return”, meaning that when a D-Bus signal is sent, no reply
will be received, nor will be expected. If the signal emitter wants to be sure
that the signal was delivered, additional mechanisms need to be constructed
for this (D-Bus does not include them directly). A D-Bus signal is very similar
to most datagram based network protocols, for example UDP. Sending a signal
will succeed even if there are no receivers interested in that specific signal.

Most D-Bus language bindings will attempt to map D-Bus signals into

something more natural in the target language. Since GLib already supports
the notion of signals (as GLib signals), this mapping is quite natural. So in
practise, your client will register for GLib signals and then handle the signals
in callback functions (a special wrapper function must be used to register for
the wrapped signals: dbus_g_proxy_connect_signal).

1.2 Declaring signals in the interface XML

We'll next extend our Value object so that it will contain two threshold values
(minimum and maximum) and the object will emit signals whenever a set
operation will fall outside the thresholds.

We'll also emit a signal whenever a value is changed (the binary content of
the new value is different from the old one).

In order to make the signals available to introspection data, we modify the
interface XML file accordingly:

<node>
<interface name="org.maemo.Value">

<!-- ... Listing cut for brevity ... -->
<!-- Signal (D-Bus) definitions -->
<! -- NOTE: The current version of dbus-bindings-tool doesn’t

actually enforce the signal arguments _at_all_. Signals need
to be declared in order to be passed through the bus itself,
but otherwise no checks are done! For example, you could
leave the signal arguments unspecified completely, and the

code would still work. -->

<!-- Signals to tell interested clients about state change.
We send a string parameter with them. They never can have
arguments with direction=in. -->

<signal name="changed_valuel">
<arg type="s" name="change_source_name" direction="out"/>
</signal>

<signal name="changed_value2">
<arg type="s" name="change_source_name" direction="out"/>

</signal>
<!-- Signals to tell interested clients that values are outside
the internally configured range (thresholds). -->

<signal name="outofrange_valuel">

<arg type="s" name="outofrange_source_name" direction="out"/>
</signal>
<signal name="outofrange_value2">

<arg type="s" name="outofrange_source_name" direction="out"/>
</signal>

</interface>
</node>

Listing 1.1: Adding the signal definitions to the interface XML (glib-dbus-
signals/value-dbus-interface.xml)

The signal definitions are required if you're planning to use the dbus-bindings-tool,
however, the argument specification for each signal is not required by the tool.

In-fact, it will just ignore all argument specifications, and as you'll see below,
we have to do a lot of "manual coding" in order to implement and use the
signals (on both client and server side). dbus-bindings-tool might get more
features in the future, but for now we’ll have to sweat a bit.

1.3 Emitting signals from a GObject

So that we can later change easily the signal names, we'll define them in a
header file and use the header file in both server and client. This is the section
with the signal names:

/* Symbolic constants for the signal names to use with GLib.
These need to map into the D-Bus signal names. */

#define SIGNAL_CHANGED_VALUE1 "changed_valuel"

#define SIGNAL_CHANGED_VALUE2 "changed_value2"

#define SIGNAL_OUTOFRANGE_VALUE1l "outofrange_valuel"

#define SIGNAL_OUTOFRANGE_VALUE2 "outofrange_value2"

Listing 1.2: Defining symbols for signal names for easier renaming (glib-dbus-
signals/common-defs.h)

Before an GObject can emit a GLib signal, the signal itself needs to be defined
and created. This is best done in the class constructor code (since the signal
types need to be created only once):

Vit
* Define enumerations for the different signals that we can generate
* (so that we can refer to them within the signals-array [below]
using symbolic names). These are not the same as the signal name
strings.

»

*

* NOTE: E_SIGNAL_COUNT is NOT a signal enum. We use it as a
3 convenient constant giving the number of signals defined so
& far. It needs to be listed last.
"/
typedef enum {
E_SIGNAL_CHANGED_VALUE1,
E_SIGNAL_CHANGED_VALUE2,
E_SIGNAL_OUTOFRANGE_VALUE1,
E_SIGNAL_OUTOFRANGE_VALUE2,
E_SIGNAL_COUNT
} ValueSignalNumber;

/*... Listing cut for brevity ...*/

typedef struct {
/* The parent class state. */
GObjectClass parent;
/% The minimum number under which values will cause signals to be
emitted. */
gint thresholdMin;
/* The maximum number over which values will cause signals to be
emitted. */
gint thresholdMax;
/* Signals created for this class. */
guint signals[E_SIGNAL_COUNT];
} ValueObjectClass;

Listing 1.3: Signal enumerations their storage and their creation (glib-dbus-
signals/server.c)

The signal types will be kept in the class structure so that they can be refer-
enced easily by the signal emitting utility (covered next). The class constructor
code will also set up the threshold limits, which in our implementation will
be immutable (they cannot be changed). You might want to experiment with
adding more methods to adjust the thresholds at your option.

Emitting the signals is then quite easy, but in order to reduce code amount,
we'll create an utility function that will launch a given signal based on its
enumeration:

Listing 1.4: Utility function to emit a signal with specified message (glib-dbus-
signals/server.c)

So that we don’t need to check the threshold values in multiple places in
the source code, we also implement that as a separate function. Emitting the
"threshold exceeded" signal is still up to the caller.

Listing 1.5: Utility function to check whether given value is within thresholds
or not (glib-dbus-signals/server.c)

Both utility functions are then used from within the respective set functions,
one of which is presented below:

/'A‘ *
* Function that gets called when someone tries to execute "setvaluel"
over the D-Bus. (Actually the marshalling code from the stubs gets
* executed first, but they will eventually execute this function.)
*/
gboolean value_object_setvaluel(ValueObject* obj, gint valueln,
GError** error) {

dbg("Called (valueIn=%d)", valueln);
g_assert(obj != NULL);

/% Compare the current value against old one. If they’re the same,
we don’t need to do anything (except return success). */
if (obj->valuel != valuelIn) {
/* Change the value. */
obj->valuel = valueln;

/* Emit the "changed_valuel" signal. */
value_object_emitSignal (obj, E_SIGNAL_CHANGED_VALUE1l, "valuel");

/* If new value falls outside the thresholds, emit
"outofrange_valuel" signal as well. */
if (!value_object_thresholdsOk(obj, valueIn)) {
value_object_emitSignal (obj, E_SIGNAL_OUTOFRANGE_VALUE1,
"valuel");
1
}
/* Return success to GLib/D-Bus wrappers. In this case we don’t need
to touch the supplied error pointer-pointer. */
return TRUE;
}

Listing 1.6: setvaluel with "value-changed" and "outofrange" signal support
(glib-dbus-signals/server.c)

You might be wondering the role of the "valuel" string parameter that is
sent along both of the signals above. Sending the signal origin name with the
signal allows one to reuse the same callback function in the client. It's quite
rare that this kind of "source naming" would be useful, but it allows us to write
a slightly shorter client program.

The implementation of setvalue2 is almost identical, but deals with the
gdouble parameter.

The getvalue-functions are identical to the versions before as is the Make-
file.

We next build the server and start it on the background (in preparation for
testing with dbus-send):

[sbox-DIABLO_X86: ~/glib-dbus-signals] > make server
dbus-binding-tool --prefix=value_object --mode=glib-server \
value-dbus-interface.xml > value-server-stub.h
cc -I/usr/include/dbus-1.0 -I/usr/lib/dbus-1.0/include \
-I/usr/include/glib-2.0 -I/usr/lib/glib-2.0/include -g -Wall \
-DG_DISABLE_DEPRECATED -DNO_DAEMON -DPROGNAME=\"server\" \
-C server.c -0 Server.o
cc server.o -o server -ldbus-glib-1 -ldbus-1 -lgobject-2.0 -1glib-2.0
[sbox-DIABLO_X86: ~/glib-dbus-signals] > run-standalone.sh ./server &
[1] 15293
server:main Connecting to the Session D-Bus.
server:main Registering the well-known name (org.maemo.Platdev_ex)
server:main RequestName returned 1.
server:main Creating one Value object.
server:value_object_class_init: Called
server:value_object_class_init: Creating signals
server:value_object_class_init: Binding to GLib/D-Bus
server:value_object_class_init: Done
server:value_object_init: Called
server:main Registering it on the D-Bus.
server:main Ready to serve requests (daemonizing).
server: Not daemonizing (built with NO_DAEMON-build define)
[sbox-DIABLO_X86: ~/glib-dbus-signals] >

Building and starting the server with signals

We then proceed to test the setvaluel method:

[sbox-DIABLO_X86: ~/glib-dbus-signals] > run-standalone.sh dbus-send \
--type=method_call --print-reply --dest=org.maemo.Platdev_ex \
/GlobalValue org.maemo.Value.setvaluel int32:10
server:value_object_setvaluel: Called (valueIn=10)
server:value_object_emitSignal: Emitting signal id 0, with message ’valuel’
method return sender=:1.38 -> dest=:1.41
[sbox-DIABLO_X86: ~/glib-dbus-signals] > run-standalone.sh dbus-send \
--type=method_call --print-reply --dest=org.maemo.Platdev_ex \
/GlobalValue org.maemo.Value.setvaluel int32:-200
server:value_object_setvaluel: Called (valueIn=-200)
server:value_object_emitSignal: Emitting signal id 0, with message ’valuel’
server:value_object_emitSignal: Emitting signal id 2, with message ’valuel’
method return sender=:1.38 -> dest=:1.42

And then setvalue2 (with doubles). You might notice something fishy in
the threshold triggering at this point:

[sbox-DIABLO_X86: ~/glib-dbus-signals] > run-standalone.sh dbus-send \
--type=method_call --print-reply --dest=org.maemo.Platdev_ex \
/GlobalValue org.maemo.Value.setvalue2 double:100.5
server:value_object_setvalue2: Called (valueIn=100.500)
server:value_object_emitSignal: Emitting signal id 1, with message ’value2’
method return sender=:1.38 -> dest=:1.44
[sbox-DIABLO_X86: ~/glib-dbus-signals] > run-standalone.sh dbus-send \
--type=method_call --print-reply --dest=org.maemo.Platdev_ex \
/GlobalValue org.maemo.Value.setvalue2 double:101
server:value_object_setvalue2: Called (valueIn=101.6000)
server:value_object_emitSignal: Emitting signal id 1, with message ’'value2’
server:value_object_emitSignal: Emitting signal id 3, with message ’value2’
method return sender=:1.38 -> dest=:1.45

Since the threshold testing logic will truncate the gdouble before testing
against the (integer) thresholds, a value of 100.5 will be detected as 100, and
will still fit within the thresholds.

Instead of printing out the emitted signal names, their enumeration values
are printed. This could be rectified with a small enumeration to string table,
but it was emitted from the program for simplicity.

You will also notice that other than seeing the server messages about emit-
ting the signals, there’s not a trace of them being sent or received. This is

because dbus-send does not listen for signals. There is a separate tool for
tracing signals and it will be covered at the end of this chapter (dbus-moni tor).

1.4 Catching signals in GLib/D-Bus clients

In order to receive D-Bus signals in the client, one needs to do quite a bit of
work per signal. This is because dbus-bindings-tool doesn’t generate any
code for signals (at this moment). The aim is to make the GLib wrappers emit
GSignals whenever an interesting D-Bus signal will arrive. This also means
that we’ll need to register our interest for a particular D-Bus signal.

When implementing the callbacks for the signals, care needs to be taken
in order to implement the prototype correctly. Since our signals will be sent
with one attached string value, our callbacks will at least receive the string
parameter. Besides the signal attached arguments, the callback will receive the
proxy object through which the signal was received, and optional user specified
data (which we don’t use in our example, so it will be always NULL).

Vi

* Signal handler for the "changed" signals. These will be sent by the
Value-object whenever its contents change (whether within
thresholds or not).

* Like before, we use strcmp to differentiate between the two
* values, and act accordingly (in this case by retrieving
synchronously the values using getvaluel or getvalue2.

NOTE: Since we use synchronous getvalues, it is possible to get
this code stuck if for some reason the server would be stuck
* in an eternal loop.
*/
static void valueChangedSignalHandler (DBusGProxy* proxy,
const char* valueName,
gpointer userData) {

/% Since method calls over D-Bus can fail, we’ll need to check
for failures. The server might be shut down in the middle of
things, or might act badly in other ways. */

GError* error = NULL;

g_print (PROGNAME ":value-changed (%s)\n", valueName) ;

/* Find out which value changed, and act accordingly. */
if (strcmp(valueName, "valuel") == 0) {
gint v = 0;
/% Execute the RPC to get valuel. */
org_maemo_Value_getvaluel (proxy, &v, &error);

if (error == NULL) {
g_print (PROGNAME ":value-changed Valuel now %d\n", v);
} else {

/% You could interrogate the GError further, to find out exactly
what the error was, but in our case, we’ll just ignore the
error with the hope that some day (preferably soon), the
RPC will succeed again (server comes back on the bus). */

handleError("Failed to retrieve valuel", error->message, FALSE);

1

} else {
gdouble v = 0.0;
org_maemo_Value_getvalue2 (proxy, &v, &error);

10

if (error == NULL) {
g_print (PROGNAME ":value-changed Value2 now %.3f\n", v);
} else {
handleError("Failed to retrieve value2", error->message, FALSE);
}
}
/* Free up error object if one was allocated. */
g_clear_error (&error) ;

3

Listing 1.7: Signal handling callback for the changed_value signals (glib-dbus-
signals/client.c)

The callback will first determine which was the source value which caused
the signal to be generated. For this, it uses the string argument of the sig-
nal. It will then retrieve the current value using the respective RPC methods
(getvaluel or getvalue2) and print out the value.

If any errors occur during the method calls, the errors will be printed out,
but the program will continue to run. If an error does occur, the GError object
will need to be freed (done with g_clear_error). We do not terminate the
program on RPC errors since the condition might be temporary (the Value
object server might be restarted later).

The code for the outOfRangeSignalHandler callback has been omitted since
it doesn’t contain anything beyond what valueChangedSignalHandler demon-
strates.

Registering for the signals is a two-step process. We first need to register
our interest in the D-Bus signals, and then install the callbacks for the respective
GLib signals. This is done within main:

/**
&

* The test program itself.

* 1) Setup GType/GSignal

* 2) Create GMainLoop object

* 3) Connect to the Session D-Bus

* 4) Create a proxy GObject for the remote Value object

* 5) Register signals that we’re interested from the Value object
* 6) Register signal handlers for them

* 7) Start a timer that will launch timerCallback once per second.
* 8) Run main-loop (forever)

*/

int main(int argc, char** argv) {
/*... Listing cut for brevity ...%*/

remoteValue =
dbus_g_proxy_new_for_name (bus,
VALUE_SERVICE_NAME, /* name */
VALUE_SERVICE_OBJECT_PATH, /* obj path */
VALUE_SERVICE_INTERFACE /* interface */);
if (remoteValue == NULL) {
handleError("Couldn’t create the proxy object",
"Unknown (dbus_g_proxy_new_for_name)", TRUE);

}

/* Register the signatures for the signal handlers.
In our case, we’ll have one string parameter passed to use along
the signal itself. The parameter list is terminated with

11

12

dbus_g_proxy_connect_signal (remoteValue, SIGNAL_OUTOFRANGE_VALUE1,
G_CALLBACK (outOfRangeSignalHandler),
NULL, NULL);

dbus_g_proxy_connect_signal (remoteValue, SIGNAL_OUTOFRANGE_VALUE2,
G_CALLBACK (outOfRangeSignalHandler),
NULL, NULL);

/% All signals are now registered and we’re ready to handle them. */
g_print (PROGNAME ":main Starting main loop (first timer in 1s).\n");

/* Register a timer callback that will do RPC sets on the values.
The userdata pointer is used to pass the proxy object to the
callback so that it can launch modifications to the object. */

g_timeout_add (1000, (GSourceFunc)timerCallback, remoteValue);

/* Run the program. */

g_main_loop_run(mainloop) ;

/* Since the main loop is not stopped (by this code), we shouldn’t
ever get here. The program might abort() for other reasons. */

/* If it does, return failure as exit code. */
return EXIT_FAILURE;
}

Listing 1.8: Register interest in D-Bus signals and installing callbacks to handle
them (glib-dbus-signals/client.c)

When adding the argument signatures for the signals (with dbus_g_proxy_add_signal)
one needs to be very careful with the parameter list. The signal argument types
must be exactly the same as are sent from the server (irrespective of the argu-
ment specification in the interface XML). This is because the current version
of dbus-bindings-tool does not generate any checks to enforce signal argu-
ments based on the interface. In our simple case we only receive one string
with each different signal, so this is not a big issue. The implementation for
the callback function will need to match the argument specification given to
the _add_signal-function, otherwise data layout on the stack will be incorrect,
and bad things will happen.

Building the client happens in the same manner as before (make client).
Since the server is still (hopefully) running on the background, we’ll now start
the client in the same session:

13

[sbox-DIABLO_X86: ~/glib-dbus-signals] > run-standalone.sh ./client
client:main Connecting to Session D-Bus.

client:main Creating a GLib proxy object for Value.

client:main Registering signal handler signatures.

client:main Registering D-Bus signal handlers.

client:main Starting main loop (first timer in 1s).
server:value_object_setvaluel: Called (valueIn=-80)
server:value_object_emitSignal: Emitting signal id 0, with message ’valuel’
client:timerCallback Set valuel to -80

server:value_object_setvalue2: Called (valueIn=-120.000)
server:value_object_emitSignal: Emitting signal id 1, with message ’value2’
server:value_object_emitSignal: Emitting signal id 3, with message ’value2’
client:timerCallback Set value2 to -120.000

client:value-changed (valuel)

server:value_object_getvaluel: Called (internal valuel is -80)
client:value-changed Valuel now -80

client:value-changed (value2)

server:value_object_getvalue2: Called (internal value2 is -120.000)
client:value-changed Value2 now -120.000

client:out-of-range (value2)!

client:out-of-range Value 2 is outside threshold
server:value_object_setvaluel: Called (valueIn=-70)
server:value_object_emitSignal: Emitting signal id 0, with message ’'valuel’
client:timerCallback Set valuel to -70

server:value_object_setvalue2: Called (valueIn=-110.000)
server:value_object_emitSignal: Emitting signal id 1, with message ’value2’
server:value_object_emitSignal: Emitting signal id 3, with message ’value2’
client:timerCallback Set value2 to -110.000

client:value-changed (valuel)

server:value_object_getvaluel: Called (internal valuel is -70)
client:value-changed Valuel now -70

client:value-changed (value2)

server:value_object_getvalue2: Called (internal value2 is -110.000)
client:value-changed Value2 now -110.000

Client calling RPC methods and receiving change and out-of-range signals

The client will start with the timer callback being executed once per second
(like before). Each iteration it will call the setvaluel and setvalue2 RPC
methods with increasing values. The number for value2 is intentionally set
below the minimum threshold so that that will cause an outofrange_value2
signal to be emitted. For each set, the changed_value signals will also be
emitted. Whenever the client will receive either of the value change signals, it
will do an getvalue RPC method call to retrieve the current value and print it
out.

This will continue until the client is terminated.

1.5 Tracing D-Bus signals

Sometimes it’s useful to see which signals are actually carried on the buses,
especially when adding signal handlers for signals that are emitted from un-
documented interfaces. The dbus-moni tor tool will attach to the D-Bus daemon
and ask it to watch for signals and report them back to the tool, so that it can
decode the signals automatically as they appear on the bus.

While the server and client are still running, we next start the dbus-moni tor
(in a separate session this time) to see whether the signals are transmitted
correctly. You should note that signals will be appear on the bus even if there
are no clients currently interested in them. In our case signals are emitted by
the server based on client issued RPC methods, so if you terminate the client,
signals will cease.

14

[sbox-DIABLO_X86: ~/glib-dbus-signals] > run-standalone.sh dbus-monitor type=’signal’

signal sender=:1.38 -> dest=(null destination)
interface=org.maemo.Value; member=changed_valuel
string "valuel"

signal sender=:1.38 -> dest=(null destination)
interface=org.maemo.Value; member=changed_value2
string "value2"

signal sender=:1.38 -> dest=(null destination)
interface=org.maemo.Value; member=outofrange_value2
string "value2"

signal sender=:1.38 -> dest=(null destination)
interface=org.maemo.Value; member=changed_valuel
string "valuel"

signal sender=:1.38 -> dest=(null destination)
interface=org.maemo.Value; member=changed_value2
string "value2"

signal sender=:1.38 -> dest=(null destination)
interface=org.maemo.Value; member=outofrange_value2
string "value2"

signal sender=:1.38 -> dest=(null destination)
interface=org.maemo.Value; member=changed_valuel
string "valuel"

signal sender=:1.38 -> dest=(null destination)
interface=org.maemo.Value; member=changed_value2
string "value2"

signal sender=:1.38 -> dest=(null destination)
interface=org.maemo.Value; member=changed_valuel
string "valuel"

signal sender=:1.38 -> dest=(null destination)
interface=org.maemo.Value; member=changed_value2
string "value2"

Running dbus-monitor to follow what signals are passed when the client runs

The tool will automatically decode the parameters to best of its ability (the
string parameter for the signals above). It does not know the semantic mean-
ing for the different signals, so sometimes you’'ll need to do some additional
testing to decide what they actually mean. This is especially true when map-
ping out undocumented interfaces (for which you might not have the source
code).

Some examples of displaying signals on the system bus on a device follow:

Nokia-N810-42-18:~# run-standalone.sh dbus-monitor --system

signal sender=:1.3 -> dest=(null destination) path=/com/nokia/mce/signal;
interface=com.nokia.mce.signal; member=display_status_ind

string "dimmed"

signal sender=:1.3 -> dest=(null destination) path=/com/nokia/mce/signal;
interface=com.nokia.mce.signal; member=system_inactivity_ind

boolean true

signal sender=:1.3 -> dest=(null destination) path=/com/nokia/mce/signal;
interface=com.nokia.mce.signal; member=save_unsaved_data_ind

signal sender=:1.3 -> dest=(null destination) path=/com/nokia/mce/signal;
interface=com.nokia.mce.signal; member=display_status_ind

string "off"

A device turning off the backlight after inactivity

signal sender=:1.3 -> dest=(null destination) path=/com/nokia/mce/signal;
interface=com.nokia.mce.signal; member=system_inactivity_ind

boolean false
signal sender=:1.3 -> dest=(null destination) path=/com/nokia/mce/signal;
interface=com.nokia.mce.signal; member=display_status_ind

string "on"

signal sender=:1.3 -> dest=(null destination) path=/com/nokia/mce/signal;
interface=com.nokia.mce.signal; member=tklock_mode_ind

string "unlocked"

A device coming back to life after a screen tap

15

A device going into offline mode

16

A device going back into normal mode.

It is also possible to send signals from the command line, which is useful
when you want to emulate some feature of a device inside the SDK. This (like

17

RPC method calls) can be done with the dbus-send tool and an example of this
kind of simulation was given in the LibOSSO chapter.

18

	Implementing and using D-Bus signals
	D-Bus Signal properties
	Declaring signals in the interface XML
	Emitting signals from a GObject
	Catching signals in GLib/D-Bus clients
	Tracing D-Bus signals

