Maemo Diablo GTK+ Basics

Training Material

February 9, 2009

Contents

1 GTK+ Basics 2
1.1 GLibbasics. e e 2
1.2 Signalling mechanism 3
1.3 GTK+terminology 5
1.4 Hello World learns to terminateitself 5
1.5 GObjectinterface 9
1.6 Adding menusandlayout 12
17 Hildonwidgets 18
1.8 Usingaccessors 24
1.9 Handling dynamicmemory 28
1.10 Avoiding deprecated functions 28

Chapter 1

GTK+ Basics

1.1 GLib basics

All GTK+ programs (and Hildon programs) use the GLib utility library. This
library provides a portable set of types for programs written in the Clanguage as
well as a lot of utility functions. Together they make writing portable software
much easier and reduce the need to re-invent the wheel for each program and
developer.

We'll cover the basic GLib types first since they will be used instead of the
standard" ones from now on:

"

gboolean Either TRUE or FALSE. FALSE is equal to zero
gint8 8-bit signed integer

gintl6 16-bit signed integer

gint32 32-bit signed integer

gint64 64-bit signed integer (there are no >64-bit ones)
gpointer Untyped pointer (’void *’) (32/64-bit)
gconstpointer R/0 untyped pointer(’const void *’) (32/64-bit)
gchar Compiler’s ’char’ (8-bit in gcc)

guchar Compiler’s ’'unsigned char’

gshort Compiler’s ’short’ (16-bit in gcc)

gushort Compiler’s ’'unsigned short’

gint Compiler’s ’int’ (32-bit normally in gcc)

guint Compiler’s ’unsigned int’

glong Compiler’s ’'long’ (32/64-bit in gcc)

gulong Compiler’s ’unsigned long’ (32/64-bit in gcc)
gfloat Compiler’s ’float’ (32-bits in gcc)

gdouble Compiler’s ’double’(64/80/81-bits in gcc)

GLib type names and their meaning

All signed integers are stored in the 2s complement system. For each signed
integer type there is also an equal size unsigned variant. Add u-character after
the g (guint64 is a 64-bit wide unsigned integer).

You should try to stick to the types without the number in their names. The
only exception is when you want to optimise memory structure layouts or your
data comes from an external source with some inherent structure (raw bitmap
images, network protocols, hardware programming).

GLib also provides a lot of macros that contain the maximum values for the
above types as well as byte ordering and order changing macros which can be
very useful when writing portable software. These are all covered in detail in

the GLib API documentation, which you should install on your development
Linux, but can also be read at maemo.org.

We will concentrate on the bare minimum features to get our applications
running and packaged, but with time, you will learn to appreciate all the code
that GLib contains (some people depreciate GLib for the same reason, since
GLib is quite large for an utility library). Since GLib is a shared library and
an Internet Tablet will always have at least one graphical application running,
using GLib won’t normally cause extra memory use.

Besides the types, GLib also offers the following functionality that you might
find useful:

e Memory allocation

e Message output, debugging and logging functions

String processing (UTF-8 and UCS-4)

Date and time processing and counting timers

Data structures:

— Dynamic strings
Linked lists (single and double)
Hash tables

Dynamic arrays (also with pointers)

Binary and N-ary trees

Caching support

e And other miscellany

As was mentioned before, the API documentation for GLib can be browsed
online at maemo.org. For other libraries that are available in maemo you should
use the master API reference index at maemo.org

If you have the suitable documentation packages installed on your devel-
opment system, you should also try devhelp, a nice application that allows you
to browse through the GNOME library documentation and provides hypertext
and search facilities. Please be careful about difference in version numbers
between the libraries installed on your SDK and the ones that the distribution
provides in the devhelp packages.

http://maemo.org/api_refs/
http://maemo.org/api_refs/
http://maemo.org/development/documentation/apis/
http://developer.imendio.com/projects/devhelp

File Edit Go Help

e

Cantents | Search GtkManuitem '
jtk_menu_item_new with label * f ﬁ GTK+ Reference Manual =
gtk_menu_tem_new with |... Top | Description | Object Hierarchy | Implemented Interfaces | Properties | Ste Propertie

gtk_menu_item_new_with_label ()
GtkwWidget* gtk_menu_item new with_label (const gchany
Creates a new GtkMenultem whose child is a GtkLabel.

label : the text for the label
Returns : the newly created GtkMenultern

gtk_menu_item_new_with_mnemonic ()
Gtkwidget* gthk_menu_1tem_new_with_mnemonic (const gcharn

Creates a new GtkMenultern containing a label. The label will be created using
gtk_label_new with_mnemonic(), so underscores in label indicate the
mnemaonic fer the menu item.

<« | i | k]

1.2 Signalling mechanism

In order to handle interaction between components (graphical or otherwise),
different libraries have invented various ways of implementing event and
change notifications. Each of them have a bit different design and restric-
tions. The design model used in GTK+ is based on registration/auto-delivery
with callbacks as the delivery method.

The mechanism is called GSignal, and it is implemented in a library called
GObject. GObject is a framework and infrastructure library for the C language
and is used to implement object-oriented constructs similar to the ones used
in Java and C++. This is done in a portable way and without special pre-
processing step necessary for source files. This is in contrast to some other
similar solutions used in libraries. Since no special tools are required, GObject
is very portable. It also uses the GLib exclusively for data structure implemen-
tations and memory management.

Using GObject (implementing your own classes, extending existing classes
and so on) is not covered in this material as this subject is quite complicated
and also unnecessary when starting GTK+ programming.

GTK+ widgets (and widgets in Hildon) use the GSignal mechanism to
implement notification "messages" that come from widgets when something
happens (normally some action caused by HID-event). These messages are
then "passed" to interested listeners by means of callback functions. There is no
shared event bus (like in Windows GDI) but rather you can think of a system
where you can connect as many "links" between widgets and callback functions
as you like. GSignal also offers a rich mechanism to specify at which point of
signal delivery to invoke some specified callback (so that the handlers can be
prioritised), but we'll settle for the default priority since it’s enough for normal
GUI-programs.

Each class defines what kind of signals an instance of that class can emit
(send). Signals are identified by a text string (which allows dynamic introspec-
tion) and the signal source (either an object that has something interesting to
notify, or some core system component). We "connect a signal" by means of
specifying the object that is capable of emitting the signal and giving the name
of signal. You can think of the name as type, but it’s just used to differentiate
between different signals, like "clicked" and "selected". Since we’re connecting,
we obviously need some target for this connection. This target is a function im-
plemented in C language which will be called when the signal is emitted. Note
that the object that emits the signal does not call the callback function directly,
but rather uses the generic signal delivery framework that GObject provides.
This allows simple API interfaces for both the emitter and the receiver as well
as for connecting the signals.

Given that C language was designed before object-oriented programming
had matured, GObject and signals are quite elegant. However, if you only have
programmed using object-oriented languages, GObject will seem strange to
you (at start, since the concepts are the same, just the syntax is different). You
will also have to type more when writing programs.

By the way, GObject documentation calls signals as "A means of customi-
sation of object behaviour and a general purpose notification mechanism".
Basically it means that signals can be used outside GTK+ and sometimes are.

You can learn more about the GObject by either reading the API or reading a
fairly extensive book which spends a lot of time explaining the GObject-system
[The Official Gnome 2 Developer’s Guide, by Matthias Wirkus, published in
2004 by No Starch Press]. Learning from existing code base is probably not
always a good idea since the system is quite complex.

1.3 GTK+ terminology

Before jumping into GTK+, we need to cover some GTK+ terminology:

Widget Is some code that draws on screen and allows the user to interact with
itself (there are exceptions to both rules). Examples: Scrollbars, Buttons,
Menus and so on.

Container A special kind of Widget (that mightbe invisible) that allocates space
for other widgets and groups them together on screen. A Container can
contain another container. Examples: Window, VBox, HBox, Toolbar.

Packing The action that is done by a container when a widget is added to it.
Normally we’d say that "we pack this widget into a container". Packing
will execute space allocation and layout code, but if the widget is not
currently visible, nothing user perceivable will happen.

Child Widget A widget that is packed into a Container. Conversely, a Widget
has a parent which is always a container. A widget cannot have more
than one parent.

Widget Tree All widgets and containers that are children to one root widget
(which is a Container by necessity). There is exactly one widget tree for
each Window (even if the Window is not visible).

Event An notification from outside the process that something has happened.
Normally these come from the HID-system and are transformed into sig-
nals by GTK+. Normal signal handling mechanisms are used to process
them.

Visibility Each widget can be told to be invisible or visible. Only if the parent
container is visible, will this cause any user perceived graphics on screen.
To see all widgets in one widget tree we need to tell all the widgets in the
tree to "show" themselves. Normally we do this after we’ve created the
widget tree completely so that the user will not see unnecessary screen
redrawing.

Property This is actually related to GObject, but is used with GTK+ widgets as
well. Generally speaking a property is some named data or value that can
be set and retrieved. When setting the property, the object can execute
some code to reflect the change of the value. Reading (getting) a property
will also normally trigger some code in the widget (class) implementation.

Most graphics toolkits contain similar elements and most toolkits for UNIX
(X11) also use similar terminology.

1.4 Hello World learns to terminate itself

These concepts can now be combined by extending our Hello World program
to terminate itself in a controlled fashion when the window manager tells the
program to close its window.

* gtk_helloworld-2.c

* This maemo code example is licensed under a MIT-style license,
that can be found in the file called "License" in the same
directory as this file.

* Copyright (c) 2007-2008 Nokia Corporation. All rights reserved.

* This version adds proper mechanisms to end the program.

* Look for lines with "NEW" or "MODIFIED" in them.
*/

#include <stdlib.h>
#include <gtk/gtk.h>

Vit

* NEW

* Callback function (event handler) for the '"delete'" event.

* This event is emitted by GTK+ main loop after a window manager has
requested this window to be closed.

* NOTES:

* - This is really a signal handler.

- The first parameter to a signal handler is a pointer to the

* object that caused the signal to be emitted (when using
gobject_signal_connect).

- There are zero or more parameters in between the first one and

uses the dash (-) and so will we. Needless to say, different
* kind of widgets are capable of emitting different events.

* Third parameter is the address of the callback function that
should receive the signal. We use G_CALLBACK()-macros to force a
* typecast into the type specification that g_signal_connect

* expects. Depending on the signal the callback will receive
different number of parameters and is expected to return

* something in some cases. There is no hard and set rule.

* THIS MEANS THAT YOU HAVE TO BE SURE ABOUT THE CAST VALIDITY.

* It is possible to pass an extra pointer (the last parameter)
* that will be carried with the signal to the signal receiver. le
will see uses for this later, but in real applications it is
* quite important. This last parameter is defined as a gpointer
(untyped pointer, void*), and if one needs to pass other data
* in the pointer’s place, one will need to do additional
typecasting (we’ll see this later).
*/
g_signal_connect (window, "delete-event",
G_CALLBACK(delete_event), NULL);
g_signal_connect (window, "destroy",
G_CALLBACK (end_program), NULL);

/% Show all widgets that are contained by the window. */
gtk_widget_show_all (GTK_WIDGET (window));

/% Start the main event loop. */
g_print("main: calling gtk_main\n");
gtk_main();

/* Display a message to the standard output and exit. */
g_print("main: returned from gtk_main and exiting with success\n");

/* Return success as exit code. */
return EXIT_SUCCESS;

Listing 1.1: Hello World with basic signals (gtk_helloworld-2.c)

It would be very inefficient to comment your code with such verbosity as
has been done here (and for all source code of this material). Use comments for
the first couple of simple programs you write so that you can return to them
later. Documenting the sources and reasons for signals in for each handler
(callback function) is recommended so that you don’t have to read all of the
source code to find out which event the signal comes from and what kind of a
signal you have connected it to.

After building the program, it will be run, and then user will click on the
"X" window close button:

[sbox-DIABLO_X86: ~/appdev] > gcc -Wall ‘pkg-config --cflags gtk+-2.0° \
gtk_helloworld-2.c -o gtk_helloworld-2 ‘pkg-config --libs gtk+-2.0°
[sbox-DIABLO_X86: ~/appdev] > ./gtk_helloworld-2

main: calling gtk_main

Window closing button engaged by the user

CB:delete_event

CB:end_program: calling gtk_main_quit()

CB:end_program: back from gtk _main_quit & returning
main: returned from gtk main and exiting with success

Running the program

There is no associated screenshot as graphically the application looks exactly
the same as before. But in this case we’'re more interested in the g_print ():ed
output of the program. Notice the order and the names of the functions in the
printed lines. This is the sequence one would expect to terminate a GTK+-based
application.

If the output of your build or test phase is significantly different, it could be
that there is some known issues in this version of the maemo training material.
To verify this you can go to the following maemo community maintained
training material wiki page on wiki.maemo.org/Maemorraining).

1.5 GOpbject interface

We still have some functions to cover, so let’s go through the basic functionality
that any GObject class must implement and hence the functionality that you
can use with any widget in GTK+.
We'll start with an example using the accessor interface and then compare
that with the same functionality implemented using the property-interface.
Create a window with window border width of 12 pixels and title of Hello
GTK+:

window = (GtkWindow*)gtk_window_new (GTK_WINDOW_TOPLEVEL) ;
gtk_window_set_title(window, "Hello GTK+");
gtk_container_set_border_width((GtkContainer*)window, 12);

Listing 1.2: Hello World with basic signals (gtk_helloworld-2.c)

Instead of using the accessors, we can use the generic object creation frame-
work introduced by GObject, and use class-names (GType-names really) to
select which class to use for object creation.

Coupled with this, we can also pass a list of properties to set at the same
time as the object is created (just before we receive the object).

This allows us to concentrate on one API instead of multitude of different
creation functions and different accessor functions like in the example above.
You will see code that uses both ways, but it is largely a matter of taste whether
you find the new (GTK+ 2.0) way cleaner and/or more coherent.

As an example, we’ll create an object of class GtkWindow by giving the
GType value GTK_TYPE_WINDOW. We also want to set two properties to this new
object, namely the "border-width" (which is inherited from GtkContainer-
class and "title" which is implemented in GtkWindow (in the GTK+ API ref-
erence, all class specific signals and properties are listed on the same page with
the old style accessor functions). We terminate the list of properties to set with
the NULL value.

window = g_object_new(GTK_TYPE_WINDOW,
"border-width", 12,
"title", "Hello GTK+",
NULL);

Listing 1.3: Hello World with basic signals (gtk_helloworld-2.c)

We later to decide to disable window resizing by the user. For this, we
need to set the "resizable"-property. Note that this is done only to illustrate the

10

http://wiki.maemo.org/Maemo_Training

property-based API, and does not mean that disabling window resizing is a
good idea (it’s not).

/* Set the value of one property. */
g_object_set_property(window, "resizable", FALSE);

Listing 1.4: Hello World with basic signals (gtk_helloworld-2.c)

Suppose now that we want to set multiple properties each along the class
hierarchy of an object. Using accessor functions for this would be tedious.

Instead we collect the properties in a list and set them all using one function
call:

gchar* data = "Some random data";

g_object_set(window,
"resizable", FALSE,/* GtkWindow-property */
"has-focus", TRUE, /* GtkWidget-property */

"width", 300, /* GtkWidget-property */
"height", 150, /% GtkWidget-property */
"user-data", data, /* GObject-property */
NULL);

Listing 1.5: Hello World with basic signals (gtk_helloworld-2.c)

To round off, we present the property-reader interface which is very similar
to the setting interface, but the direction is reversed.

gint width = 0;
gint height = 0;
gboolean isVisible = FALSE;

g_object_get (window,

"width", &width, /% GtkWidget-property */
"height", &height, /* GtkWidget -property */
"visible", &isVisible, /* GtkWidget-property */
NULL) ;

Listing 1.6: Hello World with basic signals (gtk_helloworld-2.c)

Note that the API reference doesn’t always list all properties that a class
implements, and in some cases they’re not implemented as properties, and
you'll have to use old style accessor functions. This is a sad thing but hopefully
it will be fixed with time. Also, sometimes there is an property but no suitable
accessor function.

In the next code snippet you will notice GObject casting macros. These are
used to make proper casts for functions that expect a certain type arguments.

For example, below we use gtk_container_add() which accepts two pa-
rameters:

e GtkContainer*: A Container into which to add the widget.

o GtkWidget® : The widget to add. Any widget will do.

Since a window is also a container, we can cast it safely into a container
(along the class hierarchy). Since the GtkLabel widget is also a GtkWidget we
can cast that safely into a widget.

11

This will keep the compiler happy. Obviously you will need to know
the names of the various macros to be able to use them. All of the GTK+
widget casting macros obey the rule that each "word" is written in capital
letters and there is an underscore between the "word". Thus, a GtkWidget
becomes GTK_WIDGET and GtkRadioMenuItem becomes GTK_RADIO_MENU_ITEM.

Besides keeping the compiler from complaining about mismatched types,
the macros may implement type checking (and instance checking against the
class hierarchy).

/* Pack the label into the window layout. */
gtk_container_add (GTK_CONTAINER (window), GTK_WIDGET (label));

Listing 1.7: Hello World with basic signals (gtk_helloworld-2.c)

We'll finish off with an example where using the property-based interface
would be too tedious. Sometimes the accessor interface contains nice utility
functions that take some work off your shoulders.

/* Show all the widgets that are contained by the window. */
gtk_widget_show_all (GTK_WIDGET (window)) ;

Listing 1.8: Hello World with basic signals (gtk_helloworld-2.c)

7

Start with a widget-tree and set all contained widgets
to TRUE.

Thereisalsogtk_widget_show(GtkWidget*), gtk_widget_hide(GtkWidget*)
and gtk_widget_hide_all (GtkWidget*).

visible"-property

1.6 Adding menus and layout

We'll next test out the concepts covered so far by implement a nice menu for our
application. The example includes using signals and using the property-based
system.

We'll try to use the property based interface as much as possible in order
to demonstrate the compactness of code that can be achieved. Note that each
property lookup will involve a hash table lookup inside GObject. Finding
the perfect balance between code size and speed is never easy. Smaller code
tends to lead to faster programs because there is more CPU cache left to utilise
and smaller code also improves cache locality. It is generally quite difficult to
say which of the two approaches will end up being faster. Since the interface
selection will affect code readability and teamwork, this is something that
should be decided within a team or by coding standards if they exist.

/:‘t*
* gtk_helloworld-3.c

* This maemo code example is licensed under a MIT-style license,

* that can be found in the file called "License" in the same

* directory as this file.

* Copyright (c) 2007-2008 Nokia Corporation. All rights reserved.

We add a menu and callbacks to process menu selections.

* Look for lines with "NEW" or "MODIFIED" in them.

12

13

14

15

16

17

Listing 1.9: Listing of gtk_helloworld-3.c

18

Hello Waorld! (with menus)

Figure 1.1: Without run-standalone.sh

v Hello GTK+ oy

File |

Open
Save

Quit

Hello World! (with menus)

Figure 1.2: With run-standalone.sh

The application will also now quit when "Quit" is selected from the menu.

1.7 Hildon widgets

The platform contains a set of widgets that have been optimised for smaller
devices with a stylus-like HID. The screen is quite small (physically) compared

19

to modern desktop TFI-displays, so some thinking needed to be done on how
to switch between running GUI applications and whether a traditional window
manager or graphical desktop was suitable.

In order to integrate nicely into the AF-environment, we start by switching
our application model to the one that Hildon expects us to use.

Mainly, Hildon provides two widgets: HildonProgram and HildonWindow
which replace some of the functionality that Gtkiindow normally provides.

HildonProgram is an "super-window" object that provides a shell through
which we can integrate our graphical views into the runtime environment.
Views are similar to windows, but only one view can be visible at any given
time. You might think of an Hildon application as being a dialog with multiple
tabs, but in this case the tabs will be the only interface that the user will see.
The views are implemented by using HildonWindow-widgets, which basically
are layout Containers into which we place our widgets.

This requires some thinking when it comes to UI design, especially if you
plan to port existing GUI software to use Hildon widgets.

Other points to keep in mind:

e Each view will have one GtkMenu that the application can use. This is in
contrast to using a MenuBar in a regular desktop environment.

e Each Window has a container to hold a toolbar (automatically).

o Input fields may activate the virtual keyboard when they get focus. This
will cause the size of the application layout area to resize. Application
dialogs will also be resized if necessary. If your content is not capable of
being resized easily, you might want to use a GtkScrolled Window to hold
it.

e Avoid deep hierarchies in Menus as the screen estate is limited.

e Design your application so that it will display only one main "Window" at
any given time. Applications which normally would have multiple sepa-
rate windows/dialogs all open simultaneously need to be re-engineered.

e Avoid trying to show too much information at once.

We will now modify our Hello World to use the HildonProgram and Hildon-
Window widgets. We’ll also use the Menu that HildonWindow provides. The
Menu starts empty and we’ll add Menultems into it directly, instead of creating
a separate Menu widget like was done before.

/;‘.';.‘
* hildon_helloworld-1.c

* This maemo code example is licensed under a MIT-style license,
* that can be found in the file called "License" in the same

* directory as this file.

* Copyright (c) 2007-2008 Nokia Corporation. All rights reserved.

* Let’s hildonize our application. Most of the application stays
unchanged, but the menu building utility needs some changes and

‘main’ will need to be modified.

* Look for lines with "NEW" or "MODIFIED" in them.

20

21

22

23

vbox = g_object_new(GTK_TYPE_VBOX, NULL);

/% Add the vbox as a child to the Window. */
g_object_set(window, "child", vbox, NULL);

/* Pack the label into the VBox. */
gtk_box_pack_end (GTK_BOX(vbox), GTK_WIDGET(label), TRUE, TRUE, 0);

/* Connect the termination signals. Note how the HildonWindow
object has taken the responsibilities that a GtkWindow normally
would have (NEW). */

g_signal_connect (G_OBJECT (window), "delete-event",

G_CALLBACK(delete_event), NULL);
g_signal_connect (G_OBJECT (window), "destroy",
G_CALLBACK (end_program), NULL);

/% Show all widgets that are contained by the window. This also
includes the menu (if it has been setup by this point) (NEW). */

gtk_widget_show_all (GTK_WIDGET (window)) ;

/% Start the main event loop. */

g_print("main: calling gtk_main\n");

gtk_main(Q);

g_print("main: returned from gtk_main and exiting with success\n");

return EXIT_SUCCESS;

Listing 1.10: Listing of hildon_helloworld-1.c

In order to get the required flags for the compiler and linker, we’ll use
pkg-config again. Since now we’ll be pulling flags from multiple packages
at the same time, we can combine the package names for each invocation of
pkg-config. The package that contains the Hildon widgets is called hildon-1.

[sbox-DIABLO_X86: ~/appdev] > gcc -Wall ‘pkg-config --cflags gtk+-2.0 \

hildon-1‘ hildon_helloworld-1.c -o hildon_helloworld-1 \
‘pkg-config --libs gtk+-2.0 hildon-1°¢

Adding new pkg-config package name for programs which use Hildon widgets

When run using run-standalone.sh our small program is starting to look
like a proper application:

24

v Hello Hildon!

Open
Save

Quit

Hello Hildon (with menus)!

This corresponds to the Normal View layout in the maemo tutorial:

Statusbar/titlebar area

Application area

Skin graphic area
Skin graphic area

Task Navigator area

Skin graphic area

The pixel space available for components:
e The Task navigator takes 80x480 pixels on the left.

o The Statusbar takes 720x60 pixels from the top. This area is partly used by
HildonProgram to display the title and by HildonWindow to implement
the menu.

o The area left for the application is 672x396 pixels.

Note that these sizes shouldn’t be taken for granted. This material will not
show you how to place widgets at absolute positions since that wouldn’t be

25

productive in the long run. This is because next generation devices might
have different screen sizes, or you might want to run your program in a Linux
Desktop environment someday.

1.8 Using accessors

You have now gone through the basic program and function structure that you
will encounter in GTK+ development. Needless to say, there are many more
useful things to learn too. The concept of events and signals is however very
important to understand. It is also useful to know the basics of the GObject
system even if its use is sometimes difficult.

Most hard-core GTK+ developers will find the use of GObject properties dis-
tasteful (atleast). They might use the following rationale: since g_object_set
does not require typecast macros, it will make it impossible for the compiler to
check the proper types used when compiling. This is true. However, even by
using type-cast macros one might get into trouble.

GTK+ functions check their arguments on use, so in practise when you will
pass the wrong types to functions, you will get rather nice warnings during
the run time. You should of course fix these, as they are indicators for possible
problems. Just bear in mind that according to one leading GTK+ developer
"those are just a convenience to the programmer" (meaning the typecast macro
expansions and runtime checks) so you should not rely on their presence (in-
deed, one can use black magic flags to disable their code-expansion and that
would lead to somewhat faster code).

The main reason to use the accessor based style is that most existing GTK+
code is written using it. This includes the GTK+ tutorials and the example
codes that are sometimes included in the GTK+ API documentation.

Now that you've seen what the GObject-property based style looks like, we
will switch to the accessor style for the rest of the material. This is mainly done
because that is the style that you'll encounter anyway.

In order to complete this chapter, we round it off with yet another hello
world program, which will look and taste exactly the same as the previous one,
but we’ll be using only the accessor functions. It's possible to mix the styles,
but it would be best to pick one and stay consistent. Most projects have already
selected their style so you will need to use the existing style in order to facilitate
source code comprehension within the project.

/'A‘:‘-‘
* hildon_helloworld-2.c

* This maemo code example is licensed under a MIT-style license,
* that can be found in the file called "License" in the same
* directory as this file.

* Copyright (c) 2007-2008 Nokia Corporation. All rights reserved.

* We now convert into accessor functions. Program logic is same as
* in hildon_helloworld-1.c.

Look for lines with "NEW" or "MODIFIED" in them.
:’:/

#include <stdlib.h>

26

27

28

/% Bind the HildonWindow to HildonProgram. */
hildon_program_add_window(program, HILDON_WINDOW(window));

/* Create the label widget (NEW). */
label = gtk_label_new("Hello Hildon (with accessors)!");

/% Build the menu and attach it to the HildonProgram. */
buildMenu(program) ;

/* Create a layout box for the window since it can only hold one
widget (NEW).

Using the creator function, we need to pass two parameters to
it:
- gboolean: should all children be given equal amount of space?
- gint: pixels to leave between the child widgets. */

vbox = gtk_vbox_new (FALSE, 0);

/% Add the vbox as a child to the Window (NEW). */
gtk_container_add (GTK_CONTAINER (window), vbox);

/* Pack the label into the VBox. */
gtk_box_pack_end (GTK_BOX(vbox), GTK_WIDGET(label), TRUE, TRUE, 0);

/* Connect the termination signals. */

g_signal_connect (G_OBJECT (window), "delete-event",
G_CALLBACK(delete_event), NULL);

g_signal_connect (G_OBJECT (window), "destroy",
G_CALLBACK (end_program), NULL);

/% Show all widgets that are contained by the Window. */
gtk_widget_show_all (GTK_WIDGET (window));

/* Start the main event loop. */
g_print("main: calling gtk_main\n");
gtk_main();

g_print("main: returned from gtk _main and exiting with success\n");

return EXIT_SUCCESS;
}

Listing 1.11: Listing of hildon_helloworld-2.c - an accessor-style Hello World

You might be wondering what is the point of having two different APIs
for writing GUIs in GTK+? The GObject-property model was written in order
to provide an easy way for other programming languages to bind into GTK+
objects. Since some of the languages support dynamic binding (python is a
prime example), these language bindings may inspect properties on the fly and
keep the glue code quite simple.

1.9 Handling dynamic memory

You've seen GTK+ in use so far, but what you haven’t encountered is the mem-
ory handling mechanisms that GTK+ and Hildon use internally. This material
will act cowardly and steer away from the GObject reference counting mecha-
nism and will not tell you how to interact with it. Handling memory allocation
and freeing it is done automatically by GTK+ in all normal circumstances for

29

all the widgets and unless you're creating your own, you will not need to know.

In practise, when ever a widget or any data structure part is created within
GTK+ (also Hildon), the routines will allocate some memory from the heap
(dynamic memory area) and use GObject-functions to increase the reference
count on that memory area. When ever a widget is added to a container
(for example), the container code will increase the widget’s reference count.
When a widget is removed from a container, the removal code will decrease
the reference count. When reference count is decreased, it will check whether
references hit zero, and if so, it will free the memory. If reference count never
goes to zero, that memory will not be freed.

A GTK+ widget will emit a "destroy" signal when it wants to destroy itself
(for one reason or another). This is a signal to all the reference holders that
they should remove their knowledge about that widget and hence decrease the
reference counts. After all other objects have done this, that widget may die in
piece and its memory will be freed by the reference-decrement code.

For more information, see the official reference counting documentation of
GtkObject and GObject at maemo.org,.

1.10 Avoiding deprecated functions

On your journey to the land of existing GTK+ code you will undoubtedly
encounter code that uses functions that are about to be removed from GTK+
(or at least the GTK+ developers would like to get rid of them in time). By
looking at the API function names it is very difficult to know whether they are
deprecated or not (unless you're a GTK+ guru).

For this reason the following compile time flags are useful:

e GTK_DISABLE_DEPRECATED: Set to 1 to disable all currently deprecated
functions from GTK+

e GDK_DISABLE_DEPRECATED: Similar to above but will disable deprecated
functions from GDK

e GDK_PIXBUF_DISABLE_DEPRECATED: For GDK-Pixbuf
e G_DISABLE_DEPRECATED: For GLib

e GTK_MULTIHEAD_SAFE: Not really deprecation related, but will disable
GTK+ functions that might cause problems in a multihead system (one X
display over multiple physical displays).

To use these, pass them as parameters to your compiler (they affect the
include files that you use) like this: -DGTK_DISABLE_DEPRECATED=1

If you're dealing with software that uses the older version of GTK+ (the
older version is actually called Gtk, version 1.2), then you should expect some
problems. The older version has a lot of functions whose prototype has changed
in the modern GTK+ and also some functions have been implemented in a
totally different way. The widget model is about the same, but without GObjects
and without the property-based access APL

30

http://maemo.org/api_refs/

	GTK+ Basics
	GLib basics
	Signalling mechanism
	GTK+ terminology
	Hello World learns to terminate itself
	GObject interface
	Adding menus and layout
	Hildon widgets
	Using accessors
	Handling dynamic memory
	Avoiding deprecated functions

