
Maemo Diablo Technology Overview

Training Material

for maemo 4.1

February 9, 2009

Contents

1 Introduction 5
1.1 Introduction to Maemo Technology Overview 5

2 List of Terminology 7
2.1 Terminology and definitions . 7

3 The Linux System Model 10
3.1 The Kernel . 10
3.2 What are processes . 11
3.3 Creating a process . 12
3.4 Ending a process . 13
3.5 Filesystem hierarchy . 14
3.6 Files and inodes . 16
3.7 File access permissions . 17
3.8 Programs, daemons and libraries 19
3.9 Decomposition of a simple command-line program 20

4 The GUI Components of maemo 21
4.1 Decomposition of a simple GUI-program 21
4.2 The GUI components . 23
4.3 Hildon user interface views . 24

4.3.1 Normal view . 24
4.3.2 Normal view with toolbar 24
4.3.3 Full screen view . 25
4.3.4 Full screen view with toolbar 25

4.4 Event-loop model . 26
4.5 Asynchronous programming model 26

5 Maemo Platform Overview 28
5.1 Overall design . 28
5.2 Core components . 29

5.2.1 Linux kernel . 29
5.2.2 InitFS . 30
5.2.3 Base system . 30

5.3 Generic programming libraries 31
5.4 GUI programming interfaces . 32
5.5 Audio and Video programming interfaces 32
5.6 Communication interfaces . 33

1

5.7 Other components and interfaces 33

6 Runtime View of maemo 36
6.1 Platform startup . 37
6.2 Platform state management . 37
6.3 Application startup . 37
6.4 Application state management 38

6.4.1 UI State Saving . 39
6.4.2 Autosaving User data . 39

6.5 Application termination . 39

7 Software Development Process for maemo SDK 41
7.1 Overview of the software development process using the maemo

SDK environment . 41
7.2 Creating project for application 43
7.3 Building and running applications 44
7.4 Cross-compiling for ARMEL . 45
7.5 Running, testing and debugging applications on the Internet Tablet 45
7.6 Application Packaging and Installing 46

2

Preface

Legal notice

Copyright c©2007-2009 Nokia Corporation. All rights reserved.
Nokia and maemo are trademarks or registered trademarks of Nokia Cor-

poration. Other product and company names mentioned herein may be trade-
marks or trade names of their respective owners.

Disclaimer

The information in this document is provided "as is," with no warranties what-
soever, including any warranty of merchantability, fitness for any particular
purpose, or any warranty otherwise arising out of any proposal, specification,
or sample. This document is provided for informational purposes only. Nokia
Corporation disclaims all liability, including liability for infringement of any
proprietary rights, relating to implementation of information presented in this
document. Nokia Corporation does not warrant or represent that such use will
not infringe such rights. Nokia Corporation retains the right to make changes
to this material at any time, without notice.

Licenses

This training material is licensed under a Creative Commons Attribution-
Share Alike 3.0 License.

The code examples copyrighted by Nokia Corporation that are included to
this training material are licensed to you under following MIT-style License:

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

3

http://creativecommons.org/licenses/by-sa/3.0/

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICU-
LAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAM-
AGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFT-
WARE.

4

Chapter 1

Introduction

1.1 Introduction to Maemo Technology Overview

Internet Tablets made by Nokia run on top of the maemoTMplatform. This
material gives you an overview of the maemo platform architecture and shows
what are the components and their functions inside the platform that runs on the
Internet Tablet. Maemo is based on a Debian Linux, so it is quite logical that the
material covers some basics of the generic Linux architecture also. This material
does not include code examples, but some basic knowledge of programming is
necessary to understand the concepts described within material.

Target audience: software developers who are planning to develop appli-

5

cations or services on top of the maemo platform.
Prerequisites: Basic knowledge on C or C++ programming, general oper-

ating system concepts (especially Linux), open source licenses and related IPR
issues.

This version of the material covers maemo SDK version 4.x.
More information about the maemo training material is available from

maemo training wiki pages http://wiki.maemo.org/MaemoTraining maintained
by maemo community. Notice that the information in maemo wiki is not
verified by Nokia and thus Nokia cannot be responsible of that information.

6

http://wiki.maemo.org/Maemo_Training

Chapter 2

List of Terminology

2.1 Terminology and definitions

ABI Application Binary Interface provides object code level compatibility.

ALSA Advanced Linux Sound Architecture. Linux kernel component in-
tended to replace the original Open Sound System (OSS) for providing
device drivers for sound cards.

API Application Programming Interface provides source code level compati-
bility.

applet A small application that integrates to Hildon Desktop.

ARMEL A name that e.g. Debian uses for the little endian ARM EABI (ABI for
the ARM architecture).

Bluetooth An open specification for seamless wireless short-range communi-
cations of data and voice between both mobile and stationary devices.

BT Bluetooth.

cURL cURL is a command line tool for transferring files with URL syntax.

devkit Part of the maemo SDK that contains software development tools. The
SDK contains multiple devkits e.g. doctools devkit.

ESD Enlightened Sound Daemon. This program is designed to mix together
several digitized audio streams for playback by a single device.

GPL GNU General Public License. A software license that provides a high
degree of freedom in a collaborative software development effort.

GStreamer A cross-platform multimedia framework that serves a host of mul-
timedia applications, such as video editors, streaming media broadcast-
ers, and media players.

GTK+ (GUI ToolKit+) A library of object-oriented graphical interface ele-
ments (widgets) for developing X Window applications.

7

GUI Graphical User Interface. A graphical presentation of interface which
allows user to interact with computers.

Hildon Application framework used in the maemo platform. Developed by
Nokia and based on GNOME/GTK+ technologies, currently in the process
of becoming an upstream project in gnome.org.

Hildon Desktop The main user interface component of the maemo release
Chinook, rewrite of maemo desktop.

Internet Tablet Product category for Internet optimized mobile devices with
touchscreen. The term was coined by Nokia but is being used more
widely to include other devices.

initfs Initial file system used as the root file system during Linux kernel boot
e.g. for hardware initialization (contains kernel modules and utilities for
initializing them). Mounted after boot to /mnt/initfs.

LGPL GNU Lesser General Public License. A compromise between the strong-
copyleft GNU General Public License and permissive licenses such as the
BSD licenses and the MIT License.

Linux Strictly speaking, Linux is the kernel of a Unix-like operating system,
though the word is more commonly used to describe the the whole Linux
operating system, consisting of a kernel, application programs and utili-
ties.

maemo Software platform for mobile devices developed by Nokia, based on
GNU/Linux and GNOME/GTK+ technologies. It includes proprietary
components to make it work on the Nokia Internet Tablets.

maemo.org Developer community web site maintained by Nokia, main point
of reference for open source and third party developers in general.

maemo desktop version of main user interface component of the maemo re-
lease Bora.

maemo-af-desktop Same as maemo desktop.

maemo SDK Software Development Kit to create and port applications to the
maemo platform using a PC.

Nokia Internet Tablet OS maemo platform + proprietary applications pack-
aged to an official device image provided by Nokia.

OpenSSL OpenSSL is an open source implementation of the SSL and TLS
protocols.

OSSO Open Source Software Operations, Nokia organization developing and
integrating software for Internet Tablets.

rootfs Root file system on the device.

rootstrap Part of the SDK that contains selected software components from
rootfs. Rootstrap is the root file system of a target inside Scratchbox.

8

Sardine An experimental distribution based on Hildon for maemo, primarily
of interest for developers who wish to test "bleeding edge" features that
are being developed for future releases of maemo.

SSL The Secure Sockets Layer. Commonly-used protocol for managing the
security of a message transmission on the Internet.

toolchain Part of the SDK that contains ARM cross compilation tools like com-
piler and linker.

TLS Transport Layer Security. Internet Standard similar to SSL.

Widget Element of a graphical user interface (GUI) that displays information
or provides a way for a user to interact with the application. Examples of
widgets: buttons, menus, scrollbars, forms, etc.

9

Chapter 3

The Linux System Model

Linux is a free, multi-threading, multiuser operating system that has been
ported to several different platforms and processor architectures. This chapter
gives an overview of the common System Model of Linux, which is also a base
for the maemo platform. The concepts described in this chapter include kernel,
processes, memory, filesystem, libraries and linking.

3.1 The Kernel

The kernel is the very heart of a Linux system. It controls the resources, memory,
schedules processes and their access to CPU and is responsible of communi-
cation between software and hardware components. The kernel provides the
lowest-level abstraction layer for the resources like memory, CPU and I/O de-
vices. Applications that want to perform any function with these resources
communicate with the kernel using system calls. System calls are generic
functions (such as write) and they will handle the actual work with different
devices, process management and memory management. The advantage in
system calls is that the actual call stays the same regardless of the device or
resource being used. Porting the software for different versions of the operat-
ing system also becomes easier when the system calls are persistent between
versions.

Kernel memory protection divides the virtual memory into kernel space
and user space. Kernel space is reserved for the kernel, its’ extensions and
the device drivers. User space is the area in memory where all the user mode
applications work. User mode application can access hardware devices, virtual
memory, file management and other kernel services running in kernel space
only by using system calls. There are over 100 system calls in Linux, doc-
umentation for those can be found from the Linux kernel system calls manual
pages (man 2 syscalls).

Kernel architecture, where the kernel is run in kernel space in supervisor
mode and provides system calls to implement the operating system services
is called monolithic kernel. Most modern monolithic kernels, such as Linux,
provides a way to dynamically load and unload executable kernel modules at
runtime. The modules allow extending the kernel’s capabilities (for example
adding a device driver) as required without rebooting or rebuilding the whole

10

kernel image. In contrast, microkernel is an architecture where device drivers
and other code are loaded and executed on demand and are not necessarily
always in memory.

Figure 3.1: Kernel, hardware and software relations

3.2 What are processes

A process is a program that is being executed. It consists of the executable
program code, a bunch of resources (for example open files), an address space,
internal data for kernel, possibly threads (one or more) and a data section.

Each process in Linux has a series of characteristics associated with it, below
is a (far from complete) list of available data:

PID Process ID, numeric identifier of the process

State State of the process (running, stopped etc.)

PPID Parent process ID

Children

Open files List of open files for the process

TTY The terminal to which the process is connected

RUID Real user ID, the owner of the process

11

Every process has a PID, process ID. This is a unique identification number
used to refer to the process and a way to the system to tell processes apart
from each other. When user starts the program, the process itself and all
processes started by that process will be owned by that user (process RUID),
thus processes’ permissions to access files and system resources are determined
by using permissions for that user.

3.3 Creating a process

To understand the creation of a process in Linux, we must first introduce few
necessary subjects, fork, exec, parent and child. A process can create an exact
clone of itself, this is called forking. After the process has forked itself the new
process that has born gets a new PID and becomes a child of the forking process,
and the forking process becomes a parent to a child. But, we wanted to create a
new process, not just a copy of the parent, right? This is where exec comes into
action, by issuing an exec call to the system the child process can overwrite the
address space of itself with the new process data (executable), which will do
the trick for us.

This is the only way to create new processes in Linux and every running
process on the system has been created exactly the same way, even the first
process, called init (PID 1) is forked during the boot procedure (this is called
bootstrapping).

If the parent process dies before the child process does (and parent process
does not explicitly handle the killing of the child), init will also become a
parent of orphaned child process, so its’ PPID will be set to 1 (PID of init), see
Figure 3.2.

12

Figure 3.2: Example of the fork-and-exec mechanism

Parent-child relations between processes can be visualized as a hierarchical
tree:
init-+-gconfd-2

|-avahi-daemon---avahi-daemon
|-2*[dbus-daemon]
|-firefox---run-mozilla.sh---firefox-bin---8*[{firefox-bin}]
|-udevd

...listing cut for brewity...

The tree structure above also states difference betweenprogramsandprocesses.
All processes are executable programs, but one program can start multiple pro-
cesses. From the tree structure you can see that running Firefox web browser
has created 8 child processes for various tasks, still being one program. In this
case, the preferred word to use from Firefox would be an application.

3.4 Ending a process

Whenever a process terminates normally (program finishes without interven-
tion from outside), the program returns numeric exit status (return code)
to the parent process. The value of the return code is program-specific, there
is no standard for it. Usually exit status 0, means that process terminated
normally (no error). Processes can also be ended by sending them a signal. In
Linux there are over 60 different signals to send to processes, most commonly
used are listed in Table 3.1.

13

SIGNAL Signal
number

Explanation

SIGTERM 15 Terminate the process nicely.
SIGINT 2 Interrupt the process. Can be ignored

by process.
SIGKILL 9 Interrupt the process. Can NOT be ig-

nored by process.
SIGHUP 1 Used by daemon-processes, usually to

inform daemon to re-read the configu-
ration.

Table 3.1: Most commonly used process signals in Linux

Only the user owning the process (or root) can send these signals to the
process. Parent process can handle the exit status code of the terminating
child process, but is not required to do so, in which case the exit status will
be lost.

3.5 Filesystem hierarchy

Linux follows the UNIX-like operating systems concept called unified hier-
archical namespace. All devices and filesystem partitions (they can be local
or even accessible over the network) apper to exist in a single hierarchy. In
filesystem namespace all resources can be referenced from the root directory,
indicated by a forward slash (/), and every file or device existing on the sys-
tem is located under it somewhere. You can access multiple filesystems and
resources within the same namespace: you just tell the operating system the
location in the filesystem namespace where you want the specific resource to
appear. This action is called mounting, and the namespace location where you
attach the filesystem or resource is called a mount point.

The mounting mechanism allows establishing a coherent namespace where
different resources can be overlaid nicely and transparently. In contrast, the
filesystem namespace found in Microsoft operating systems is split into parts
and each physical storage is presented as a separate entity, e.g. C: is the first
hard drive, E: might be the CD-ROM device.

Example of mounting: Let us assume we have a memory card (MMC) con-
taining three directories, named first, second and third. We want the contents
of the MMC card to appear under directory /media/mmc2. Let us also assume
that our device file of the MMC card is /dev/mmcblk0p1. We issue the mount
command and tell where in the filesystem namespace we would like to mount
the MMC card.
/ $ sudo mount /dev/mmcblk0p1 /media/mmc2
/ $ ls -l /media/mmc2
total 0
drwxr-xr-x 2 user group 1 2007-11-19 04:17 first
drwxr-xr-x 2 user group 1 2007-11-19 04:17 second
drwxr-xr-x 2 user group 1 2007-11-19 04:17 third
/ $

In addition to physical devices (local or networked), Linux supports several
pseudo filesystems (virtual filesystems) that behave like normal filesystems,

14

but do not represent actual persistent data, but rather provide access to system
information, configuration and devices. By using pseudo filesystems, operat-
ing system can provide more resources and services as part of the filesystem
namespace. There is a saying that nicely describes the advantages: "In UNIX,
everything is a file".

Examples of pseudo filesystems in Linux and their contents:

procfs Process filesystem, used to access process information from the kernel.
Usually mounted under /proc

devfs Used for presenting device files, e.g. devices as files. An abstraction
for accessing I/O an peripherals. Usually mounted under /dev

sysfs Information about devices and drivers from the kernel, also used for
configuration. Usually mounted under /sys

Using pseudo filesystems provides a nice way to access kernel data and
several devices from userspace processes using same API and functions than
with regular files.

Most of the Linux distributions (as well as maemo platform) also follow
the Filesystem Hierarchy Standard (FHS) quite well. FHS is a standard which
consists of a set of requirements and guidelines for file and directory placement
under UNIX-like operating systems 3.3.

Figure 3.3: Example of filesystem hierarchy

15

The most important directories and their contents:

/bin Essential user command binaries that need to be available also insingle user mode.

/sbin Essential system binaries (e.g. init, insmod, ifup)

/lib Libraries for the binaries in /bin and /sbin

/usr/bin Non-essential user command binaries that are not needed insingle user mode

/usr/sbin Non-essential system binaries (e.g. daemons for network-services)

/usr/lib Libraries for the binaries in /usr/bin and /usr/sbin

/etc Host-specific system-wide configuration files

/dev Device files

/home User home directories (optional)

/proc Virtual file system documenting kernel and process status as text files

More information about FHS can be found from its’ homepage at path-
name.com/fhs/.

3.6 Files and inodes

For most users understanding the tree-like structure of the filesystem names-
pace is enough. In reality, things get more compilated than that. When a phys-
ical storage device is taken into use for the first time, it must be partitioned.
Every partition has its own filesystem, which must be initialized before first
usage. By mounting the initialized filesystems, we can form the tree-structure
of the entire system.

When a filesystem is created to partition, a data structures containing infor-
mation about files are written into it. These structures are called inodes. Each
file in filesystem has an inode, identified by inode serial number.

Inode contains the following information of the file:

Owner Owner of the file

Group Group owner of the file

Permissions File permissions, more on these to follow

Last read time Time when file was last accessed (atime)

Last change time Time when file was last modified (mtime)

Inode change time Time when inode itself was last modified (ctime)

Hard links Number of hard links to this file

Size The length of the file in bytes

Address Pointer to the actual content data of the file

16

http://www.pathname.com/fhs/
http://www.pathname.com/fhs/

The only information not included in an inode is the file name and direc-
tory. These are stored in the special directory files, each of which contains one
filename and one inode number. The kernel can search a directory, looking for
a particular filename, and by using the inode number the actual content of the
inode can be found, thus allowing the content of the file to be found.

Inode information can be queried from the file using stat command:

user@system:~$ stat /etc/passwd
File: ‘/etc/passwd’
Size: 1347 Blocks: 8 IO Block: 4096 regular file

Device: 805h/2053d Inode: 209619 Links: 1
Access: (0644/-rw-r--r--) Uid: (0/ root) Gid: (0/ root)
Access: 2007-11-23 06:30:49.199768116 +0200
Modify: 2007-11-17 21:27:02.271803959 +0200
Change: 2007-11-17 21:27:02.771832454 +0200

Notice that the stat command shown above is from desktop Linux, as
maemo platform does not have stat -command by default.

Some advantages of inodes:

• Multiple filenames can be associated with the same inode. This is called
hard linking or just linking. Notice that hard links only work within
one partition as the inode numbers are only unique within a given parti-
tion.

• As processes open files, the kernel converts the filename to an inode
number at the first possible chance, thus moving the file (within same
partition) does not prevent a process from accessing the file once it is
opened (as long as the process knows the inode number).

In addition to hard links, Linux filesystem also supports soft links, or
more commonly called, symbolic links (or for short: symlinks). A symbolic
link contains the path to the target file instead of a physical location on the
hard disk. Since symlinks do not use inodes, symlinks can span across the
partitions. Symlinks are transparent to processes which read or write to files
pointed by a symlink, process behaves as if operating directly on the target file.

3.7 File access permissions

The Linux security model is based on the UNIX security model. Every user on
the system has an user ID (UID) and every user belongs to one or more groups
(identified by group ID, GID). Every file (or directory) is owned by a user and a
group user. There is also a third category of users, others, those are the users
that are not the owners of the file and do not belong to the group owning the
file.

For each of the three user categories, there are three permissions that can
either be granted or denied:

Read (r) Whether the file may be read. In the case of a directory, the ability to
list the contents of the directory.

Write (w) Whether the file may be written to or modified (includes deleting
and renaming).

17

Execute (x) Whether the file may be executed. In the case of a directory, the
ability to enter to or execute program from that directory.

The file permissions can be checked simply by issuing a ls -l command:

/ $ ls -l /bin/ls
-rwxr-xr-x 1 root root 78004 2007-09-29 15:51 /bin/ls
/ $ ls -l /tmp/test.sh
-rwxrw-r-- 1 user users 67 2007-11-19 07:13 /tmp/test.sh

The first 10 characters in output describe the file type andpermission flags
for all three user categories:

• First character tells the file type (- means regular file, d means directory,
lmeans symlink)

• Characters 2-4 display the access rights for the actual owner of the file
(-means denied)

• Characters 5-7 display the access rights for the group owner of the file (-
means denied

• Character 8-10 display the access rights for other users (-means denied)

The output also lists the owner and the group owner of the file, in this order.
Let us look closer what this all means. For the first file, /bin/ls, the owner

is root and group owner is also root. First three characters (rwx) indicate
that owner (root) has read, write and execute permissions to the file. Next three
characters (r-x) indicate that the group ownerhas read and execute permissions.
Last three characters (r-x) indicate that all other users have read and execute
permissions.

The second file, /tmp/test.sh, is owned by user and group owned by users
belonging to users group. For user (owner) the permissions (rwx) are read,
write and execute. For users in users group the permissions (rw-) are read and
write. For all other users the permissions (r–) are only read.

File permissions can also be presented as octal values, where every user cate-
gory is simply identified with one octal number. Octal values of the permission
flags for one category are just added together using following table:

Octal value Binary presentation
Read access 4 100
Write access 2 010
Execute access 1 001

Example: converting "rwxr-xr--" to octal:

First group "rwx" = 4 + 2 + 1 = 7
Second group "r-x" = 4 + 1 = 5
Third group "r--" = 4 = 4

So "rwxr-xr--" becomes 754

As processes run effectively with permissions of the user who started the
process, the process can only access the same files as the user.

Root-account is a special case: Root user of the system can override any
permission flags of the files and folders, so it is very adviseable to not run
unneeded processes or programs as rootuser. Using root account for anything
else than system administration is not recommended.

18

3.8 Programs, daemons and libraries

As we earlier stated, processes are programs executing in the system. Processes
are, however, also a bit more than that: They also include set of resources such
as open files, pending signals, internal kernel data, processor state, an address
space, one or more threads of execution, and a data section containing global
variables. Processes, in effect, are the result of running program code. A
program itself is not a process. A process is an active program and related
resources.

Threads are objects of activity inside the process. Each thread contains a
program counter, process stack and processor registers unique to that thread.
Threads require less overhead than forking a new process because the system
does not initialize a new system virtual memory space and environment for the
process. Threads are most effective on multi-processor or multi-core systems
where the process flow can be scheduled to run on another processor thus
gaining speed through parallel or distributed processing.

Daemons are processes that run in the background unobtrusively, without
any direct control from a user (by disassociating the daemon process from the
controlling TTY). Daemons can perform various scheduled and non-scheduled
tasks and often they serve the function of responding to the requests from other
computers over a network, other programs or hardware activity. Daemons have
usually init as their parent process, as daemons are launched by forking a
child and letting the parent process die, in which case init adopts the process.
Some examples of the daemons are: httpd (web server), lpd (printing service),
cron (command scheduler).
Linking refers to combining a program and its libraries into a single exe-

cutable and resolving the symbolic names of variables and functions into their
resulting addresses. Libraries are a collection of commonly used functions
combined into a package.

There are few types of linking:

Static linking Static linking copies a set of routines to the executable target
application, thus expanding the target executable size.

Dynamic linking Dynamic linking means that the subroutines of a library
are loaded into an application program at runtime. Dynamic libraries
remain on filesystem as separate files from executable. Most of the work
of linking is done at the time the application is loaded, thus creating a bit
of overhead in application startup time.

Run-time linking Run-time linking (or dynamic loading) is a subset of dy-
namic linking where a dynamically linked library loads or unloads at
run-time on request.

In addition to being loaded statically or dynamically, libraries can also be
shared. Dynamic libraries are almost always shared, static libraries can not be
shared at all. Sharing allows same library to be used by multiple programs at
the same time, sharing the code in memory.

Dynamic linking of shared libraries provides multiple benefits:

• Common code of the applications is shared at runtime, which reduces the
total memory usage.

19

• Application executable file size is reduced, which reduced the total stor-
age usage.

• Fixing a bug from shared code fixes the bug from all the applications
using the same code.

Most Linux systems use almost entirely dynamic libraries and dynamic
linking.

3.9 Decomposition of a simple command-line pro-
gram

Below is an image which shows the decomposition of a very simple command-
line-program in Linux, dynamically linking only to glibc (and possibly Glib).
As Glib is so commonly used in addition to standard C library (glibc), those
libraries have been drawn to one box, altough they are completely separate
libraries. The hardware devices are handled by the kernel and the program
only accesses them through the system call (syscall) interface.

Figure 3.4: Decomposition of a simple command-line program

20

Chapter 4

The GUI Components of
maemo

This chapter introduces the basics of the graphical user interface and GUI
programming components used in the maemo platform, different views of
Hildon desktop, event-loop -based GUI model and signals.

4.1 Decomposition of a simple GUI-program

Comparing the simple command-line-program (in previous chapter) and sim-
ple GUI-program running on maemo platform reveals the extensive usage of
different libraries for GUI programs. Maemo platform provides many APIs
to handle the GUI generation, resource management and application integra-
tion to the application framework. These APIs also hide the complexity of
the X library, which normal maemo GUI programs don’t have to care about,
although it is used internally by the GUI libraries provided. A decomposition
view of a simple GUI program running on the maemo platform is seen on
Figure 4.1.

21

Figure 4.1: Decomposition of a simple GUI-program

22

4.2 The GUI components

Figure 4.2: Internet Tablet graphical user interface

The graphical user interface application framework of maemo is called Hildon.
It is based on the technologies that GNOME framework (used on many desktop
Linuxes) is built on, most importantly the GTK+. Hildon contains several
enhancements to GTK+making it more suitable to use on the Internet Tablets:
Hildon widgets, speed-improved Sapwood theme engine, image server, task
navigator, control panel, status bar, touch screen input method, stylus support
and a window management on a high-pixels-per-inch screen.

The GUI programming APIs for maemo are based on GTK+ widgets and
Hildon extensions on top of it. Most GTK+ widgets and methods work in the
Hildon environment without modification, the most important exception being
the application main window widget which is replaced by Hildon window.

Only one application is visible at the time, as the application’s window
fills the whole application area. Switching between running applications is
done from task navigator. Task navigator also includes menus for launching
new applications. Statusbar (titlebar) area includes application menu and also
buttons to close and minimise the running application. The application has
only one main menu, with submenus spawning horizontally to the right, so
the application developer must plan menus carefully as the space for menus
is limited. The on-screen virtual keyboard is launched automatically when the
user of the Internet Tablet with stylus-input activates a text-input UI element.
The running application is resized as the on-screen-keyboard reserves space
from the application area.

Statusbar/titlebar can be expanded by user defined plug-in applications,
providing different status information of the applications. Also the main win-
dow (visible when no applications are running, or all applications are min-
imised) allows running plug-ins, called home applets, usually being some

23

kind of small informational applications, e.g. news ticker, weather information
or clock.

4.3 Hildon user interface views

The Hildon user interface has several layout modes which applications can use,
and even switch between views dynamically.

4.3.1 Normal view

• Application area of 696x396 pixels

• Task navigator, statusbar/titlebar visible

Figure 4.3: Normal view

4.3.2 Normal view with toolbar

• Application area of 696x360 pixels with a single toolbar

• Application area of 696x310 pixels with two toolbars (e.g. Application
and Find toolbars)

• Task navigator, statusbar/titlebar visible

• Skin graphics area on the bottom of the screen replaced by toolbar

24

Figure 4.4: Normal view with Toolbar

4.3.3 Full screen view

• Application area of 800x480 pixels fully available

• Task navigator, statusbar/titlebar and skin graphic area not visible

• Mode can be activated and deactivated by a hardware button or by the
application code

Figure 4.5: Full screen view

4.3.4 Full screen view with toolbar

• Variation of the full screen view

25

• Application area of 800x422 pixels with a single toolbar

• Application area of 800x370 pixels with two toolbars (e.g. Application
and Find toolbars)

• Task navigator, statusbar/titlebar and skin graphic area not visible

• Toolbar should be scalable as it can be visible in both normal and full
screen modes

Figure 4.6: Full screen view with toolbar

4.4 Event-loop model

GTK+ is a event-loop based (or event-driven), cross-platform GUI library. In
event-loop programming model when the user is doing nothing, GTK+waits in
its main loop, waiting for input. When user performs an action - for example
a click of a button - the main loop wakes up and sends an event to one or
more widgets. When widget receives an event, they usually emit one or more
signals. These signals can be connected in the application code to functions
performing certain action based on the signal emitted and the widget emitting
the signal. Functions connected to a signal are referred as callback functions.
After a callback finishes its task, GTK+ will return to the main loop and wait
for more input. Events can also be sent by the application engine itself.

There are graphical GUI-builder applications that assist in creation of the UI-
schema and even binding the signals from UI elements to the callback functions,
speeding up the development process significantly. Most commonly used
GTK+ GUI-builders are Gazpacho and Glade.

4.5 Asynchronous programming model

Sometimes it is necessary to perform actions in the application at the same
time while the main loop sits and waits for events. This approach is called

26

http://gazpacho.sicem.biz/
http://glade.gnome.org/

Figure 4.7: Event-loop model, signal and a callback

asynchronicity. Asynchronous actions are executed as non-blocking, meaning
the control return to the caller immediately without interrupting the main
program flow. The caller will have to specify a callback function that will
be called when the operation is completed. Using asynchronicity makes the
application UI more responsive and prevents the application "locking up" while,
for example, reading data from over the network connection. For example
GnomeVFS API has asynchronous counterparts to all functions. Callbacks for
asynchronous operations are triggered in the normal event-loop, meaning that
the application will be able to handle both GUI events and GnomeVFS events
simultaneously. Other example of the API supporting asynchronicity is D-Bus,
more information about using D-Bus asynchronously can be found from the
maemo platform development course material.

Other option to achieve asynchronicity and improve UI responsiveness is to
use threads, but this approach is not recommended unless you have experience
on thread based programming. Threaded applications and other software
components are hard to debug and may easily cause synchronisation problems.

27

Chapter 5

Maemo Platform Overview

This chapter decomposes the maemo platform into components and describes
the scope of those components in the platform. Also the overall design is
shortly introduced, with the most commonly needed programming APIs.

5.1 Overall design

Maemo is a Debian GNU/Linux based embedded operating system designed for
networked mobile devices, called Internet Tablets. Being based on Linux and
Debian which support the ideology of sharing the source code, collaboration
and open development model, maemo is also open source.

Maemo runs on a recent 2.6 version of Linux kernel. The user space soft-
ware links with the GNU C library, glibc. Maemo aims at being as much
compatible with the mainstream Linux systems as is possible, reducing the
time and effort needed for porting existing applications and developing new
ones to maemo platform.

The package management framework comes from the Debian distribution,
simplifying and automating the process of installation, upgrading, configuring
and uninstallation of the software packages.

The user interface architecture is based on GNOME framework, especially on
GTK+ widgets. GTK+ has been further extended by Hildon to better suit the
needs of an Internet Tablet. The actual user interface engine under GTK+ is
X Window System (X Server) with Matchbox window manager. GUI applica-
tions are built using Hildon framework and GTK+ widgets, although using X
Server directly with Xlib API is possible, but not recommended.

28

Below is a table of the software "stack" for the maemo platform:

Applications

Fonts Sounds Icons

Connectivity System
UI

Search Text Input MIME
Types

Home Applets Control Panel Task Navigator Status
Bar

Backup Installer Alarm Help Launcher

XML E-D-S Telepathy GConf

GStreamer GnomeVFS GSF

Sapwood Hildon Widgets Hildon File UI HTML
Widget

GTK+

GDK GdkPixbuf

Pango Cairo Atk

GLib GObject

Samba GPS Obex ConIC UPnP JPEG
PNG
TIFF
SVG

Matchbox

D-BUS HAL SQLite curl
HTTP

Clipboard

SSL System SW Cert.
mgnt

libosso X

Libstd C++ Compression dpkg apt Freetype Fontconfig

Sysvinit Base
Files

Busybox GNU C
Library

Core Libs Core
Utils

Core
Daemons

BlueZ Power mgnt WLAN
security

ALSA Video4-
Linux

Bootloader Linux kernel including JFFS2, TCP/IP InitFS in-
cluding
uClibc
dsme

5.2 Core components

5.2.1 Linux kernel

The Linux kernel is the heart of the maemo platform. The kernel is loaded
at very early stage during the boot process by a bootloader. Maemo platform
is based on Linux kernel version 2.6 and current Internet Tablets utilising the
maemo platform use the OMAP chipset containing a ARM processor and a DSP

29

http://xmlsoft.org/
http://www.gnome.org/projects/evolution/arch.shtml
http://telepathy.freedesktop.org/wiki
http://www.gnome.org/projects/gconf/index.html
http://gstreamer.freedesktop.org/
http://library.gnome.org/devel/gnome-vfs-2.0/unstable
http://library.gnome.org/devel/gsf/unstable/index.html
http://freshmeat.net/projects/libgtkhtml
http://freshmeat.net/projects/libgtkhtml
http://www.gtk.org/
http://en.wikipedia.org/wiki/Gdk
http://library.gnome.org/devel/gdk-pixbuf/unstable/index.html
http://www.pango.org/
http://cairographics.org/
http://en.wikipedia.org/wiki/Accessibility_Toolkit
http://en.wikipedia.org/wiki/GLib
http://library.gnome.org/devel/gobject/unstable
http://u3.samba.org/samba
http://gpsd.berlios.de/
http://sourceforge.net/projects/openobex
http://www.cybergarage.org/net/upnp/c/index.html
http://en.wikipedia.org/wiki/Jpeg
http://en.wikipedia.org/wiki/Png
http://en.wikipedia.org/wiki/Tiff
http://librsvg.sourceforge.net/
http://matchbox-project.org/
http://www.freedesktop.org/wiki/Software/dbus
http://www.freedesktop.org/wiki/Software/hal
http://www.sqlite.org/
http://curl.haxx.se/
http://curl.haxx.se/
http://www.freedesktop.org/wiki/Software/dbus
http://x.org/
http://en.wikipedia.org/wiki/Libstdc++
http://en.wikipedia.org/wiki/Dpkg
http://en.wikipedia.org/wiki/Advanced_Packaging_Tool
http://www.freetype.org/
http://www.fontconfig.org/
http://en.wikipedia.org/wiki/Sysvinit
http://busybox.net/
http://www.gnu.org/software/libc
http://www.gnu.org/software/libc
http://www.bluez.org/
http://www.alsa-project.org/
http://www.thedirks.org/v4l2
http://www.thedirks.org/v4l2
http://en.wikipedia.org/wiki/Linux_kernel
http://en.wikipedia.org/wiki/Jffs2
http://en.wikipedia.org/wiki/Tcp/ip
http://www.uclibc.org/

unit. The kernel implements the memory management, process management,
networking services as well as hardware specific device and bus drivers. The
device drivers include e.g. USB, LCD and WLAN. The bus drivers include
e.g. I2C and Flash bus. Part of the kernel functionality, such as device drivers,
network protocols or filesystem support can be implemented as loadable kernel
modules which can be loaded or removed during runtime. Kernel is stored on
a separate flash partition on Internet Tablet, called kernel partition. User space
applications communicate to the kernel using system calls.

It is possible for developer to modify or configure the default kernel, as the
sources for kernel are available. There is a guide at maemo community website
describing the process. Modified kernel can also be flashed back to the device,
but when doing so developer must take into account the size of the kernel
partition on the Internet Tablet, as there is no way to change its size.

5.2.2 InitFS

At the last state of the kernel boot process the initial filesystem, InitFS, is
mounted as the root filesystem. InitFS is a small filesystem used during the
boot time, containing necessary binaries to bring the Internet Tablet normal
state. After the boot scripts on InitFS are done, the final root filesystem is
mounted from flash and the InitFS is mounted into /mnt/initfs.

5.2.3 Base system

The root filesystem includes the basic filesystem hierarchy of a Debian system
and Debian based core distribution with few exceptions. The coreutils and
Bash (shell) has been replaced with size-optimised Busybox, which combines
many common UNIX utilities into a single small executable. Few utilities have
also been dropped out because of space saving.

As the maemo platform includes all the basic UNIX utilities and a shell, it is
possible to create and run shell-scripts and combine those small but powerful
utilities to solve complex tasks easily. The user accounts and groups are han-
dled just like stated in the first chapter. Internet Tablets have predefined user
accounts, user and root. The root account should be used for administrative
purposes only and is protected by default.

The filesystem hierarchy follows filesystem Hierarchy Standard (FHS) quite
well. All applications are normally installed under the /usr directory and
must use the hierarchy described for /usr in FHS. In addition to the directories
specified in FHS, the following are placed under /usr:

share/icons/hicolor/<size>/apps Icon files

share/sounds Sound files

share/themes GUI themes

The user’s home directory (/home/user) can be used quite freely, with the
exception of the directory /home/user/MyDocswhich is reserved for user’s own
files (e.g. documents, images) visible through the GUI.

File management operations for user files must be performed through an
API provided by the application framework as maemo platform manages file
operations case-insensitively, even when Linux filesystems are case-sensitive.

30

Below is an image of different partitions and their relational sizes on the
internal flash of the Internet Tablet:

Figure 5.1: Partitions on Internet Tablet internal flash

5.3 Generic programming libraries

Below is a list of the generic programming libraries used for developing appli-
cations on maemo platform, and a short description of them.

GNU C Library (glibc) glibc is a standard C library released by the GNU
Project. It provides the functionality required by POSIX 1c, 1d and 1j
standards as well as ANSI C and some of the functionality required by
ISO C99. This library is used (indirectly at least) by every application
running on maemo platform.

GLib General-purpose utility library providing many portable data types,
macros, type conversions, string utilities, object-oriented framework (GOb-
ject), event mechanism, etc.

GObject GObject provides the implementation of flexible and extensible object-
oriented framework for C language.

GConf Provides a centralised configuration management framework. Allows
applications to store and retrieve their settings in a consistent manner,
without the need to use configuration files.

Gnome-VFS Filesystem abstraction library, extendable by plug-ins which al-
low the application to ignore the semantics of implementations between
different kind of devices and services. By using GnomeVFS, an applica-
tion doesn’t need to care whether it will read a file coming from a web
server (URLs are supported), or from within an compressed file archive
(.zip, .rpm, .tar.gz, etc.) or a memory card.

31

LibOSSO LibOSSO is a basic library containing required and helpful functions
for maemo applications. LibOSSO also contains a wrapper allowing an
application to connect to D-Bus in a simple and consistent manner. Also
provides an application state serialisation mechanism. This mechanism
can be used by an application to store its state so that it can continue
from the exact point in time when user switched to another application.
Useful to conserve battery life on portable devices. Also provides a GUI
application an interface to register itself to the application framework,
preventing the application to be killed as a "stray" application.

D-Bus A service that allows related processes to pass events to each other.
Passes important events from the core system to applications (e.g., "bat-
tery low"). Interfacing with D-Bus is an important part of integrating
your application with the runtime environment.

5.4 GUI programming interfaces

When developing GUI applications on maemo platform, following libraries are
essential:

GTK+ The GIMP toolkit, a multi-platform toolkit for creating graphical user
interfaces. Graphical elements in GTK+ are called widgets. GTK+ also
supports the notion of themes, which are user switchable sets of graphics
and behaviour models. Uses GLib, GDK, Pango and ATK.

GDK GDK (GIMP Drawing Kit) is a graphics library that acts as a wrap-
per around the low-level drawing and windowing functions pro-
vided by the underlying graphics system.

Pango A portable library designed to implement correct and flexible text
layout for various cultures around the world. This is necessary to
support the different ways that people read and write text, since it’s
not always from top-to-bottom and left-to-right. Used by GTK+ for
all displayed text.

Atk The Accessibility ToolKit. Provides generic methods by which an
application can support people with special needs with respect to
using computers.

Cairo Cairo is a 2D graphics library designed to produce consistent output on
all output media while taking advantage of display hardware acceleration
when available.

Hildon A library containing widgets and themes designed specifically for
maemo, enhancing GTK+. This library is necessary when creating GUI
applications on maemo platform since the screen has very high PPI and
applications are sometimes controlled via a stylus.

5.5 Audio and Video programming interfaces

The maemo platform includes several APIs to handle multimedia (audio and
video) in applications:

32

ALSA The Advanced Linux Sound Architecture (ALSA) provides audio and
MIDI functionality. It also includes support for the older Open Sound
System (OSS) API, providing compatibility with older software.

ESD The Enlightened Sound Daemon (ESD or EsounD) is the sound server for
GNOME. It mixes several sound streams into on for output. It can also
manage network-transparent audio.

GStreamer GStreamer is a plug-in expandable multimedia processing frame-
work. The GStreamer framework is designed to make it easy to write
applications that handle audio or video or both. Developers can write
new plug-ins to add support for new formats to existing applications.
GStreamer includes components for building a media player that can
support a very wide variety of formats.

Video4Linux Video4Linux or V4L is a video capture API for Linux, also sup-
ported by the maemo platform and the integrated camera on some Inter-
net Tablets. Video4Linux is closely integrated with the Linux kernel.

5.6 Communication interfaces

The Internet Tablet contains WLAN and Bluetooth hardware for connecting to
the Internet wirelessly, as well as the USB port for cable connection. The maemo
platform contains several APIs to handle the connectivity in the application:

Sockets Standard Linux sockets.

TCP/IP A standard TCP/IP protocol stack, provided by Linux kernel.

BlueZ Implementation of the BluetoothTMwireless standards specification. In-
cludes kernel modules, libraries and utilities. Capable of communicating
the tasks that should not be handled by kernel via D-Bus-interface.

OpenSSL Library providing a security layer for encrypted networking.

curl HTTP A client-side support library for URL-transfer, supporting protocols
HTTP, HTTPS, FTP, FTPS, LDAP etc.

5.7 Other components and interfaces

The maemo software stack image contains a lot more applications and interfaces
than the generally used listed above. Here is a short description of the most
important ones:

Alarm The alarm framework provides an easy way to manage timed events
in the device. It is powerful, and not restricted only to wake-up alarms.
The framework provides many other features, e.g. setting multiple alarm
events, setting custom icon and title of the shown alarm message, execut-
ing commands, booting up the device if it is turned off etc.

33

Backup The maemo backup application saves and restores application data
stored in user’s home directory (/MyDocs) and setting directories and
files. Other locations than the defaults can be configured to be backed up
too.

Camera The built-in camera present in some Internet Tablets is compatible
with Video-4-Linux version 2 API. Since the maemo platform delegates
all multimedia handling to the GStreamer framework, applications that
need access to the built-in camera should employ GStreamer for this in-
stead of directly accessing Video4Linux devices, via the v4l2src GStreamer
module.

ConIC An Internet connectivity library used to request connections, retrieve
current statistics, proxies and settings for Internet Access Points (IAPs).

GDK-Pixbuf A library that implements various graphical bitmap formats and
also alpha-channeled blending operations using 32-bit pixels (RGBA).
The Application Framework uses pixbufs to implement the shadows and
background picture scaling when necessary. Uses GLib and GDK.

GPS The GPS framework in maemo platform consists of a GPS daemon and a
library for controlling it, as well as methods to start and stop GPS devices
(for power saving).

E-D-S The Evolution Data Server provides a single database for common,
desktop-wide information, such as a user’s address book or calendar
events.

HAL The purpose of HAL (Hardware Abstraction layer) is to provide means
for storing data about hardware devices, gathered from multiple sources
and to provide an interface for applications to access this data.

Help Framework The Help Framework is a centralised way to offer help ser-
vices to the user of the program. Maemo platform has an in-built help
system that handles all the help documentation for the programs using
the Help Framework. Libraries are used to register a program to the Help
Framework, and after that the content of the actual help documentation
can be used.

Hildon Hildon framework provides additional components on top of the
GNOME components:

Home Applets Home applets (or plug-ins) are small applications that
run on the main window, providing different kind of information,
e.g. news ticker or clock.

Task Navigator Task navigator provides a menu used for switching be-
tween applications. To make application visible in Task navigator,
you need to create a Desktop file for the application, containing
information needed to show the application entry in the menu.

Status Bar Status bar is a GUI component displaying status of the various
tasks using tiny icons on the main window. The status bar can
contain user defined items used by a plug-in, but with a limitation
of two additional items (only the last two added are visible).

34

Control Panel Control panel is a standard and centralised place for ap-
plication and server settings changeable by the user. Applications
can provide Control Panel plug-ins to interface with the application
settings.

Installer The Application manager is a GUI application used to install, up-
grade and remove application packages for Internet Tablet. Internally the
Application manager uses the Debian package management system.

MIME Types This component provides the Internet media type (MIME type)
registry of two-part identifiers for file formats.

OBEX OBEX (OBject EXchange) is a communications protocol API that facil-
itates the exchange of binary objects between devices over a Bluetooth
connection.

Telepathy Telepathy provides D-Bus-based framework that unifies all forms
of real-time communication, such as instant messaging, IRC, voice and
video over Internet. The framework provides an interface for plug-ins to
extend the protocol support by implementing new connection managers.

Text input (Hildon Input Method) As the maemo platform is intended to be
used on embedded devices, it is a quite logical that one might want to
have different input methods from the ones available by default, or just
simply want a different layout for the virtual keyboard. The maemo
platform introduces a way to enable writing custom plug-ins for Hildon
Input Method.

Sysvinit System V style init scripts that spawn or kill processes according to
system run-level. On Internet Tablet mainly used during system startup
and shutdown.

Search The maemo global search component provides a search framework.

35

Chapter 6

Runtime View of maemo

This chapter gives an overview of the application life-cycle on the maemo
platform, introduces services used in the application state-management and
resource-saving.

Components involved in the application life cycle management and switch-
ing are following:

• Task Navigator (TN)

– Lists the applications in menu and launches them by user request

– Performs a background killing of applications in case of low memory.

– Lists applications, both running and background killed applications
(user sees them as running applications).

– Switches between running applications (or to background killed ap-
plication) by:

∗ Requesting the window manager to top the application window.
∗ Sending the application a message requesting it to top a window.
∗ Restarting the application if it was background killed.

• D-Bus session bus

– Executes or activates applications by sending activation messages.

– Takes care that only one instance of the application is running at a
time.

– Watches the application to register itself within given time-out. If
application does not register, D-Bus assumes the application startup
failed and will kill the process.

• Maemo launcher

– Provides a way to speed up some applications startup time by pro-
viding a way to execute applications that has been compiled as a
shared library.

• Window manager

– Takes care of handling the window switching and window stacking.

36

6.1 Platform startup

The first phase of the platform startup is the bootloader, which will load the
Linux kernel into memory. Linux kernel then loads the initial filesystem (InitFS)
from its’ own filesystem partition. InitFS, used as a root filesystem during the
startup, contains necessary binaries and scripts to initialise the system and to
access the actual root filesystem, which will be mounted after the InitFS scripts
finish. Root filesystem contains several init-scripts, which will handle the
startup of necessary daemons, services and the application framework itself,
everything that makes the maemo platform. See chapter "maemo Platform
Development" for more information.

6.2 Platform state management

Platform state is managed through several system software components:

Device State Management Entity (dsme) A daemon responsible for manag-
ing the states of the device, including shutdown and startup. It monitors
the status of critical processes (such as D-Bus, X11 and Window Manager),
initiates power saving operations based on inactivity etc.

Mode Control (mce) Provides interfaces for controlling device modes, such as
offline mode (disabling of Bluetooth and WLAN), and various system
level user interfaces, such as device lock, touch screen and keypad lock,
LEDs, etc.

Battery Management (bme) Responsible for battery voltage monitoring and
recognition, battery charging, and charger recognition.

One of the important (and interesting from developers point of view) com-
ponents is D-Bus. The D-Bus message bus is a central part of the platform
architecture. Applications should listen to D-Bus messages indicating the state
of the device, such as "battery low" and "shutdown". When receiving these
messages, the application may, for instance, ask the user to save any files that
are open, or perform other similar actions to save the state of the application.
There is also a specific system message, emitted when applications are required
to close themselves.

6.3 Application startup

In maemo platform, user starts the applications primarily from the Task Nav-
igator. There are also few other ways to start the application, either from the
Status Bar (e.g. connection manager), from File Manager to view a file, or from
other applications (e.g. "Send as E-mail").

User normally start applications from the Task Navigator. Task Navigator
starts the application by sending a D-Bus message to the application service
with the D-Bus auto-activation flag set.

Other applications can also start applications implicitly by sending a D-Bus
message, for example to open a file of certain MIME-type that the application
has registered to the MIME database.

37

Every application in the Internet Tablet has a well-known name uniquely
identifying the application, e.g. "Browser" or "Email". D-Bus has a service
name for each application, derived from the application name.

Where applications get the D-Bus service name:

Task Navigator The service name is specified in the applications’ .desktop file

File Manager and Browser The service name is retrieved from the GnomeVFS
MIME-type-handler registry via LibOSSO-MIME library

Other applications use the service application API libraries. The libraries
know what services the application registers to D-Bus.

D-Bus daemon looks into application .service file to see how to execute the
application before delivering the message. Applications launched by the D-Bus
daemon will only have one instance of them running, because D-Bus does not
allow the same service name to be registered by more than one process.

The application launched by the D-Bus daemon will inherit environment
variables that were defined at the time when the D-Bus session bus was started.
D-Bus does not provide a way to change the environment variables passed to
an application. As the Task Navigator uses D-Bus to launch the application,
it’s same as directly launching the application using D-Bus.

Environment variable should not be used for dynamic configuration changes,
since they require program restart and D-Bus does not support that. The lan-
guage change is also communicated through environment variables. As ap-
plications and their libraries also cache locale state, changing the language in
Internet Tablet requires restarting all applications and processes.

When the application is started, the window manager takes care of drawing
the title bars, dialog borders and windows. Application windows are in a stack.
When you top an application, it comes on top of the stack. The window manager
also keeps the application dialogs stacked together with the application in the
window stack, thus when the application is topped, it’s dialogs are topped too.

The application can top itself, or the Task Navigator can top the application
by sending a standard X message.

To conserve memory and resources, only single instance of an application
can be running at the same time. If application is already running, it will only
receive a message about the new invocation (for example "open file") and top
itself (bring the window to foreground). User can switch to another, already
running application either by using the Task Navigator UI, or by closing the
topmost application.

6.4 Application state management

Application framework has a mechanism for shutting down GUI applications
on the background to save memory so that other application can be run. This
is called background killing.

Background killing is implemented by Task Navigator to transparently close
an application when the user does not see it and to restart the application when
user needs it again. This is possible because applications are required to be
able to save their user interface (UI) states and Task Navigator has a list of all

38

running UI applications. The application is required to save its UI state when
it moves to background.

If in some cases Internet Tablets don’t have enough memory to run all the
applications at the same time, the system may kill an application running in
the background that has indicated to be killable.

Saving the UI state may not always be feasible for the application (e.g.
during a download in progress), that is why the application must notify the
Task Navigator when it has saved the state and can be killed. Task Navigator
will kill all the killable applications when system notifies that it is low of
memory. When the application is started again, it is required to rebuild the UI
according to the saved state. Task Navigator won’t restart the application if
there is not enough memory in the system for that.

6.4.1 UI State Saving

The application UI state saving is assisted by LibOSSO. The LibOSSO library
creates the state file and provides the file descriptor to the application. Libosso
will make sure that the real state file will not be updated until the state file
write has completed and file closed. The application uses the standard POSIX
filesystem API for writing and reading to the file descriptor.

If device is restarted, the UI states will be discarded, so applications start
from their default state. Each application with different version number will
have it’s own UI state file, meaning that if the application is updated (version
number changes), it will start from the default state.

6.4.2 Autosaving User data

Some applications are required to save the unsaved user data periodically when
on the foreground (top), so that as little as possible is lost on battery failure.
Applications should register a LibOSSO callback function for this operation
and tell when their user data has changed (the application is in "dirty state").
LibOSSO will then tell the application when they should do the saving.

Note that applications should call "forced autosave" LibOSSO function when
they go to background (LibOSSO does not know when this happens).

6.5 Application termination

Applications exit when user closes them from the application UI, or when
system requests that. System will request (and force) the applications to exit
when:

• The Internet Tablet battery charge drops low

• The Internet Tablet is switched off

• User changes the Internet Tablet language settings

• User resets the Internet Tablet to factory settings

• User tries close or to switch to an application that doesn’t respond

39

– User must accept to dialog whether to close a non-responsive appli-
cation

If the Internet Tablet runs low on memory, the system can request application
to be background killed. If there is not enough free memory to satisfy the
applications’ request for more memory, the application will be killed by the
kernel.

40

Chapter 7

Software Development
Process for maemo SDK

Software development for the maemo is possible using many different program-
ming languages. This chapter describes the process and common practises of
developing software for the maemo platform. It also introduces the tools that
form the maemo SDK environment.

7.1 Overview of the software development process
using the maemo SDK environment

The development environment used in the process is called maemo SDK which
is freely downloadable from the maemo community website maemo.org. The
maemo SDK utilises Scratchbox, which is a cross-compilation toolkit and a
"sandbox", designed for embedded Linux application development. Scratchbox
is downloadable from its’ website scratchbox.org.

The maemo SDK provides a development environment for creating soft-
ware to Internet Tablets using a Linux desktop computer. The SDK runs inside
the Scratchbox and contains all necessary compilers, tools, libraries and head-
ers to develop software for the two target hardware architectures, Intel (x86)
and ARMEL. Application development and preliminary testing of the software
is done in x86 environment, which also includes the Hildon Desktop for run-
ning the applications on the desktop computer (using virtual X server, such
as Xephyr) like they would run on the actual Internet Tablet. Using desktop
computer for development makes the application development quite similar
to normal Linux application development. Maemo SDK also has a support-
plug-in for Eclipse, Integrated Development Environment (IDE) which speeds
up and helps the development process radically.

After the preliminary testing on desktop computer is finished, the next phase
is to cross-compile and package the application for the ARMEL architecture
using the ARMEL target of the Scratchbox, and the application is ready to be run
and tested on the Internet Tablet. Testing-phase using the actual Internet Tablet
is important even when the application runs fine on the desktop environment
as the SDK is not exactly 100% identical to the device.

41

http://www.maemo.org
http://www.scratchbox.org/

Development tools and resources used in maemo application development
process:

Scratchbox Scratchbox is a cross compilation toolkit designed to make em-
bedded Linux application development easier. It also provides a full set
of tools to integrate and cross compile an entire Linux distribution. The
toolkit supports ARM architecture and x86 and few more are under devel-
opment. Scratchbox supports multiple configurations for each developer
in the same host machine.

maemo SDK rootstraps The rootstrap is a target root filesystem image for
Scratchbox that can be used as a basis for development. Maemo SDK
provides rootstraps for both x86 and ARMEL development.

Nokia binaries Software packages that are not available as a source code but
may provide public API, like the contact information import/export li-
brary, GPS (location) libraries, address-book and presence-information
libraries.

maemo tools Several tools for power users requiring more sophisticated de-
velopment tools than provided in the standard maemo SDK package.
Includes tools for code analysis, debugging, resource usage, test automa-
tion etc.

maemo.org repositories maemo.org website has a lot of different repositories
that are meant to be used with standard Debian package installation tools.
Different repositories offer different software, tools, source code etc. for
the developers.

maemo.org documentation Documentation for maemo software development
include HOW-TOs, tutorials, API References, manual pages and several
other guides, available from the maemo.org website.

maemo examples Maemo examples package includes demonstrative source
code for using different APIs and can be fetched from the maemo reposi-
tories.

Phases of software development process using C or C++ language:

1. Create project (possibly using templates) for the application

2. Create or update the source code and needed resources

3. Create or update the UI schema (possibly using UI builder)

4. Build the application with x86 rootstrap

5. Launch and test the application on x86 rootstrap

6. Debug the application on x86 rootstrap

7. Cross-compile the application with ARMEL rootstrap

8. Launch and test the application on the Internet Tablet

42

http://maemo.org/
http://maemo.org/

9. Debug application on Internet Tablet

10. Create ARMEL installation package for the Internet Tablet

11. Install ARMEL application package to the Internet Tablet

Phases of software development process using Python (and other script-
languages):

1. Create project (possibly using templates) for the application

2. Create or update the source code and needed resources

3. Launch and test the application on x86 rootstrap

4. Debug the application on x86 rootstrap

5. Launch and test the application on the Internet Tablet

6. Debug application on the Internet Tablet

7. Create ARMEL installation package for the Internet Tablet

8. Install ARMEL application package to the Internet Tablet

Following chapters take a deeper look into the phases of the development
process.

7.2 Creating project for application

Creating the project for an application can be done either from scratch, or by
using several examples available from maemo web site as templates. Source
files can be edited using your favourite text editor. Scratchbox creates a "sand-
box", a separate filesystem (called rootstrap) under your normal filesystem,
so it is advisable to create a symbolic link to Scratchbox folders for easier access
of files from your desktop environment. Of course, using a console-based text
editor (such as nano) inside Scratchbox shell is also possible.

As maemo uses Debian-based package management system for applica-
tions, it is a good practise to take that into account already when creating a
project and create necessary files for packaging or use helper-applications for
creating them, such as GNU Autotools.

Notice, the Hildon Desktop must be started before running the maemo
applications inside the SDK.

The official programming language for maemo application development is
C, but several other languages can be used with maemo also, for example C++
and Python.

There exists several UI-builder applications to speed up the creation of UI
schema, most commonly used are Gazpacho and Glade.

Complete guide of setting up and using the development environment can
be found from maemo Getting Started and maemo Application Development
materials.

43

http://gazpacho.sicem.biz/
http://glade.gnome.org/

7.3 Building and running applications

When source code has been created with necessary resource-files, the applica-
tion is ready for compiling and testing. The SDK provides all the usual Linux
development tools inside the Scratchbox as well as the maemo application
framework so the applications look and behave like they would on the Internet
Tablet.

List of the most commonly used development tools provided by themaemo rootstrap:

GNU toolchain An umbrella term used of the programming tools produced
by GNU Project, including:

GCC (GNU Compiler Collection) Compilers and linkers for C, C++ etc.

GNU Autotools Suite of programming tools designed to assist inMakefile
generation and portability-issues.

GNU Make Make is a tool which controls the generation of executables
and other non-source files of a program from the program’s source
files.

GNU Binutils A collection of programming tools for the manipulation
of object code in various object file formats.

pkg-config Pkg-config is a helper tool used when compiling applications and
libraries which helps you to insert the correct compiler options to find
libraries.

Debian packaging tools Tools to create Debian software packages.

Process:

• Build the application using x86 target

• Launch the application on x86 target
There is a helper shell-script on maemo rootstrap calledrun-standalone.sh
which must be used when launching applications in scratchbox. The
script sets the correct environment for the application to use the maemo
application framework

• Test the application

• If needed, modify the source code and repeat

Debugging on x86 rootstrap

• Use the x86 target of the Scratchbox

• Launch the application in debugger

• Run and debug the application

• Modify and re-compile if needed

44

Debugging the application in x86 target can be done with regular Linux
development and debugging tools, like GNU Debugger (gdb), valgrind, ltrace
and strace. Some tools also provide a graphical user interface to be used for
debugging.

Notice also that the valgrind tool is not available in ARMEL target, only
in x86 target. Valgrind is a really powerful tool for memory leak detection,
profiling etc.

If the debugging tool of your choice is missing, as the Scratchbox is practi-
cally a full Linux system, it is also possible to add a tool into it by compiling
the tool for Scratchbox from the source code.

Other possibility is to run the application on Internet Tablet and debug
remotely using gdbserver on Internet Tablet and gdb on PC environment,
using either cable or wireless connection.

For more information about debugging, there is a comprehensive debugging
guide on maemo.org website.

7.4 Cross-compiling for ARMEL

Cross-compiling the application for the Internet Tablet is really straightforward.
Activate ARMEL target of Scratchbox and re-compile the application. There is
no difference in the process of compiling the application to x86 or ARMEL
targets. After compiling, your application binary is ready for the Internet
Tablet architecture.

The ARMEL target should only be used for cross-compiling and packaging
the applications for the Internet Tablet device, not for running and testing as
the ARM CPU emulation of Qemu may not provide accurate enough emulation
to finalise testing only on PC.

7.5 Running, testing and debugging applications on
the Internet Tablet

Even though the SDK is quite accurately identical to the target environment
of the Internet Tablet, it isn’t 100% identical. Especially if your application is
using some special hardware of the Internet Tablet, the application can behave
differently in SDK than on the device.

Fortunately, testing the cross-compiled binary transparently on the Internet
Tablet has been made possible from Scratchbox, using either SSH or a CPU
transparency tool called sbrsh (Scratchbox Remote Shell). Connection to the
Internet Tablet can be handled either by USB cable or wirelessly.

CPU transparency is a technique where ARMEL binaries are copied from
the Linux PC side over the connection to the device where the binary is then
executed natively by the Internet Tablets own ARM CPU. This is a handy way
to test your ARMEL-binaries in a native ARM CPU instead of running them
in Linux PC under the QEMU emulator. The QEMU emulator may not be
identical with the real ARM device so using CPU transparency with the real
device is a convenient way to test drive your ARMEL application. The graphical
environment is still the Scratchbox (and virtual X server, Xephyr) environment.

45

• Launch the application transparently on the Internet Tablet

• Test the application

• If needed, modify and re-compile the source code and repeat

Check the maemo.org documentation for more information about CPU
transparency.

It is possible to use gdb debugger remotely with a gdbserver running in the
Internet Tablet. The application to be debugged is then ran in the Internet Tablet,
which makes debugging results 100% accurate. This makes remote debugging
the application using desktop PC possible, again the same connectivity as with
the CPU transparency is needed when remotely debugging.

For more information about debugging, there is a comprehensive debugging
guide on maemo.org website.

7.6 Application Packaging and Installing

Maemo uses the Debian package management system for installing and man-
aging application packages and their dependencies. For end-user the actual
package management is invisible and the application installation and removal
in the Internet Tablet is done by Application Manager. The Debian pack-
age management system uses packages which consists of application binaries,
optional libraries, meta data describing the package, dependencies to other
packages and optional pre-install and post-install scripts. Packaging the appli-
cations is done with standard Debian packaging tools.

After creating the Debian package (creation is identical to the desktop Linux
environment) the application is ready to be installed to Internet Tablet. Applica-
tion is either copied to the device and installed using Application manager, or by
placing the package into the package repository (essentially a web or FTP site
containing application packages) and creating a single-click install-file.
The single-click install-file eliminates the need for user to manually configure
repositories into the Application manager, providing an easy-to-use way for
end-user to install the application.

The site maemo.org/downloads contains a vast amount of applications,
ready to be installed to Internet Tablet, and utilises the single-click install
method.

The maemo Application Development course material contains more infor-
mation how to create Debian installation packages for Internet Tablets.

46

http://maemo.org/development/documentation/
http://maemo.org/downloads

	Introduction
	Introduction to Maemo Technology Overview

	List of Terminology
	Terminology and definitions

	The Linux System Model
	The Kernel
	What are processes
	Creating a process
	Ending a process
	Filesystem hierarchy
	Files and inodes
	File access permissions
	Programs, daemons and libraries
	Decomposition of a simple command-line program

	The GUI Components of maemo
	Decomposition of a simple GUI-program
	The GUI components
	Hildon user interface views
	Normal view
	Normal view with toolbar
	Full screen view
	Full screen view with toolbar

	Event-loop model
	Asynchronous programming model

	Maemo Platform Overview
	Overall design
	Core components
	Linux kernel
	InitFS
	Base system

	Generic programming libraries
	GUI programming interfaces
	Audio and Video programming interfaces
	Communication interfaces
	Other components and interfaces

	Runtime View of maemo
	Platform startup
	Platform state management
	Application startup
	Application state management
	UI State Saving
	Autosaving User data

	Application termination

	Software Development Process for maemo SDK
	Overview of the software development process using the maemo SDK environment
	Creating project for application
	Building and running applications
	Cross-compiling for ARMEL
	Running, testing and debugging applications on the Internet Tablet
	Application Packaging and Installing

