
Maemo Diablo The GUI Components of
maemo

Training Material

February 9, 2009

Contents

1 The GUI Components of maemo 2
1.1 Decomposition of a simple GUI-program 2
1.2 The GUI components . 4
1.3 Hildon user interface views . 5

1.3.1 Normal view . 5
1.3.2 Normal view with toolbar 5
1.3.3 Full screen view . 6
1.3.4 Full screen view with toolbar 6

1.4 Event-loop model . 7
1.5 Asynchronous programming model 7

1

Chapter 1

The GUI Components of
maemo

This chapter introduces the basics of the graphical user interface and GUI
programming components used in the maemo platform, different views of
Hildon desktop, event-loop -based GUI model and signals.

1.1 Decomposition of a simple GUI-program

Comparing the simple command-line-program (in previous chapter) and sim-
ple GUI-program running on maemo platform reveals the extensive usage of
different libraries for GUI programs. Maemo platform provides many APIs
to handle the GUI generation, resource management and application integra-
tion to the application framework. These APIs also hide the complexity of
the X library, which normal maemo GUI programs don’t have to care about,
although it is used internally by the GUI libraries provided. A decomposition
view of a simple GUI program running on the maemo platform is seen on
Figure 1.1.

2

Figure 1.1: Decomposition of a simple GUI-program

3

1.2 The GUI components

Figure 1.2: Internet Tablet graphical user interface

The graphical user interface application framework of maemo is called Hildon.
It is based on the technologies that GNOME framework (used on many desktop
Linuxes) is built on, most importantly the GTK+. Hildon contains several
enhancements to GTK+making it more suitable to use on the Internet Tablets:
Hildon widgets, speed-improved Sapwood theme engine, image server, task
navigator, control panel, status bar, touch screen input method, stylus support
and a window management on a high-pixels-per-inch screen.

The GUI programming APIs for maemo are based on GTK+ widgets and
Hildon extensions on top of it. Most GTK+ widgets and methods work in the
Hildon environment without modification, the most important exception being
the application main window widget which is replaced by Hildon window.

Only one application is visible at the time, as the application’s window
fills the whole application area. Switching between running applications is
done from task navigator. Task navigator also includes menus for launching
new applications. Statusbar (titlebar) area includes application menu and also
buttons to close and minimise the running application. The application has
only one main menu, with submenus spawning horizontally to the right, so
the application developer must plan menus carefully as the space for menus
is limited. The on-screen virtual keyboard is launched automatically when the
user of the Internet Tablet with stylus-input activates a text-input UI element.
The running application is resized as the on-screen-keyboard reserves space
from the application area.

Statusbar/titlebar can be expanded by user defined plug-in applications,
providing different status information of the applications. Also the main win-
dow (visible when no applications are running, or all applications are min-
imised) allows running plug-ins, called home applets, usually being some

4

kind of small informational applications, e.g. news ticker, weather information
or clock.

1.3 Hildon user interface views

The Hildon user interface has several layout modes which applications can use,
and even switch between views dynamically.

1.3.1 Normal view

• Application area of 696x396 pixels

• Task navigator, statusbar/titlebar visible

Figure 1.3: Normal view

1.3.2 Normal view with toolbar

• Application area of 696x360 pixels with a single toolbar

• Application area of 696x310 pixels with two toolbars (e.g. Application
and Find toolbars)

• Task navigator, statusbar/titlebar visible

• Skin graphics area on the bottom of the screen replaced by toolbar

5

Figure 1.4: Normal view with Toolbar

1.3.3 Full screen view

• Application area of 800x480 pixels fully available

• Task navigator, statusbar/titlebar and skin graphic area not visible

• Mode can be activated and deactivated by a hardware button or by the
application code

Figure 1.5: Full screen view

1.3.4 Full screen view with toolbar

• Variation of the full screen view

6

• Application area of 800x422 pixels with a single toolbar

• Application area of 800x370 pixels with two toolbars (e.g. Application
and Find toolbars)

• Task navigator, statusbar/titlebar and skin graphic area not visible

• Toolbar should be scalable as it can be visible in both normal and full
screen modes

Figure 1.6: Full screen view with toolbar

1.4 Event-loop model

GTK+ is a event-loop based (or event-driven), cross-platform GUI library. In
event-loop programming model when the user is doing nothing, GTK+waits in
its main loop, waiting for input. When user performs an action - for example
a click of a button - the main loop wakes up and sends an event to one or
more widgets. When widget receives an event, they usually emit one or more
signals. These signals can be connected in the application code to functions
performing certain action based on the signal emitted and the widget emitting
the signal. Functions connected to a signal are referred as callback functions.
After a callback finishes its task, GTK+ will return to the main loop and wait
for more input. Events can also be sent by the application engine itself.

There are graphical GUI-builder applications that assist in creation of the UI-
schema and even binding the signals from UI elements to the callback functions,
speeding up the development process significantly. Most commonly used
GTK+ GUI-builders are Gazpacho and Glade.

1.5 Asynchronous programming model

Sometimes it is necessary to perform actions in the application at the same
time while the main loop sits and waits for events. This approach is called

7

http://gazpacho.sicem.biz/
http://glade.gnome.org/

Figure 1.7: Event-loop model, signal and a callback

asynchronicity. Asynchronous actions are executed as non-blocking, meaning
the control return to the caller immediately without interrupting the main
program flow. The caller will have to specify a callback function that will
be called when the operation is completed. Using asynchronicity makes the
application UI more responsive and prevents the application "locking up" while,
for example, reading data from over the network connection. For example
GnomeVFS API has asynchronous counterparts to all functions. Callbacks for
asynchronous operations are triggered in the normal event-loop, meaning that
the application will be able to handle both GUI events and GnomeVFS events
simultaneously. Other example of the API supporting asynchronicity is D-Bus,
more information about using D-Bus asynchronously can be found from the
maemo platform development course material.

Other option to achieve asynchronicity and improve UI responsiveness is to
use threads, but this approach is not recommended unless you have experience
on thread based programming. Threaded applications and other software
components are hard to debug and may easily cause synchronisation problems.

8

	The GUI Components of maemo
	Decomposition of a simple GUI-program
	The GUI components
	Hildon user interface views
	Normal view
	Normal view with toolbar
	Full screen view
	Full screen view with toolbar

	Event-loop model
	Asynchronous programming model

