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Chapter 1

The Linux System Model

Linux is a free, multi-threading, multiuser operating system that has been
ported to several different platforms and processor architectures. This chapter
gives an overview of the common System Model of Linux, which is also a base
for the maemo platform. The concepts described in this chapter include kernel,
processes, memory, filesystem, libraries and linking.

1.1 The Kernel

The kernel is the very heart of a Linux system. It controls the resources, memory,
schedules processes and their access to CPU and is responsible of communi-
cation between software and hardware components. The kernel provides the
lowest-level abstraction layer for the resources like memory, CPU and I/O de-
vices. Applications that want to perform any function with these resources
communicate with the kernel using system calls. System calls are generic
functions (such as write) and they will handle the actual work with different
devices, process management and memory management. The advantage in
system calls is that the actual call stays the same regardless of the device or
resource being used. Porting the software for different versions of the operat-
ing system also becomes easier when the system calls are persistent between
versions.

Kernel memory protection divides the virtual memory into kernel space
and user space. Kernel space is reserved for the kernel, its” extensions and
the device drivers. User space is the area in memory where all the user mode
applications work. User mode application can access hardware devices, virtual
memory, file management and other kernel services running in kernel space
only by using system calls. There are over 100 system calls in Linux, doc-
umentation for those can be found from the Linux kernel system calls manual
pages (man 2 syscalls).

Kernel architecture, where the kernel is run in kernel space in supervisor
mode and provides system calls to implement the operating system services
is called monolithic kernel. Most modern monolithic kernels, such as Linux,
provides a way to dynamically load and unload executable kernel modules at
runtime. The modules allow extending the kernel’s capabilities (for example
adding a device driver) as required without rebooting or rebuilding the whole



kernel image. In contrast, microkernel is an architecture where device drivers
and other code are loaded and executed on demand and are not necessarily
always in memory.
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Figure 1.1: Kernel, hardware and software relations

1.2 What are processes

A process is a program that is being executed. It consists of the executable
program code, a bunch of resources (for example open files), an address space,
internal data for kernel, possibly threads (one or more) and a data section.

Each process in Linux has a series of characteristics associated with it, below
is a (far from complete) list of available data:

PID Process ID, numeric identifier of the process
State State of the process (running, stopped etc.)
PPID Parent process ID

Children

Open files List of open files for the process

TTY The terminal to which the process is connected

RUID Real user ID, the owner of the process



Every process has a PID, process ID. This is a unique identification number
used to refer to the process and a way to the system to tell processes apart
from each other. When user starts the program, the process itself and all
processes started by that process will be owned by that user (process RUID),
thus processes’ permissions to access files and system resources are determined
by using permissions for that user.

1.3 Creating a process

To understand the creation of a process in Linux, we must first introduce few
necessary subjects, fork, exec, parent and child. A process can create an exact
clone of itself, this is called forking. After the process has forked itself the new
process that has born gets a new PID and becomes a child of the forking process,
and the forking process becomes a parent to a child. But, we wanted to create a
new process, not just a copy of the parent, right? This is where exec comes into
action, by issuing an exec call to the system the child process can overwrite the
address space of itself with the new process data (executable), which will do
the trick for us.

This is the only way to create new processes in Linux and every running
process on the system has been created exactly the same way, even the first
process, called init (PID 1) is forked during the boot procedure (this is called
bootstrapping).

If the parent process dies before the child process does (and parent process
does not explicitly handle the killing of the child), init will also become a
parent of orphaned child process, so its” PPID will be set to 1 (PID of init), see
Figure 1.2.
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Figure 1.2: Example of the fork-and-exec mechanism

Parent-child relations between processes can be visualized as a hierarchical
tree:
init-+-gconfd-2
| -avahi-daemon---avahi-daemon
| -2*[dbus-daemon]

| -firefox---run-mozilla.sh---firefox-bin---8*[{firefox-bin}]
| -udevd

...listing cut for brewity...

The tree structure above also states difference between programs and processes.
All processes are executable programs, but one program can start multiple pro-
cesses. From the tree structure you can see that running Firefox web browser
has created 8 child processes for various tasks, still being one program. In this
case, the preferred word to use from Firefox would be an application.

1.4 Ending a process

Whenever a process terminates normally (program finishes without interven-
tion from outside), the program returns numeric exit status (return code)
to the parent process. The value of the return code is program-specific, there
is no standard for it. Usually exit status 0, means that process terminated
normally (no error). Processes can also be ended by sending them a signal. In
Linux there are over 60 different signals to send to processes, most commonly
used are listed in Table 1.1.



SIGNAL Signal Explanation
number

SIGTERM | 15 Terminate the process nicely.

SIGINT 2 Interrupt the process. Can be ignored
by process.

SIGKILL 9 Interrupt the process. Can NOT be ig-
nored by process.

SIGHUP 1 Used by daemon-processes, usually to
inform daemon to re-read the configu-
ration.

Table 1.1: Most commonly used process signals in Linux

Only the user owning the process (or root) can send these signals to the
process. Parent process can handle the exit status code of the terminating
child process, but is not required to do so, in which case the exit status will
be lost.

1.5 Filesystem hierarchy

Linux follows the UNIX-like operating systems concept called unified hier-
archical namespace. All devices and filesystem partitions (they can be local
or even accessible over the network) apper to exist in a single hierarchy. In
filesystem namespace all resources can be referenced from the root directory,
indicated by a forward slash (/), and every file or device existing on the sys-
tem is located under it somewhere. You can access multiple filesystems and
resources within the same namespace: you just tell the operating system the
location in the filesystem namespace where you want the specific resource to
appear. This action is called mounting, and the namespace location where you
attach the filesystem or resource is called a mount point.

The mounting mechanism allows establishing a coherent namespace where
different resources can be overlaid nicely and transparently. In contrast, the
filesystem namespace found in Microsoft operating systems is split into parts
and each physical storage is presented as a separate entity, e.g. C: is the first
hard drive, E: might be the CD-ROM device.

Example of mounting: Let us assume we have a memory card (MMC) con-
taining three directories, named first, second and third. We want the contents
of the MMC card to appear under directory /media/mmc2. Let us also assume
thatour device file of the MMC card is /dev/mmcblkOp1. We issue the mount
command and tell where in the filesystem namespace we would like to mount
the MMC card.

/ $ sudo mount /dev/mmcblkOpl /media/mmc2

/ $ 1s -1 /media/mmc2

total 0

drwxr-xr-x 2 user group 1 2007-11-19 04:17 first
drwxr-xr-x 2 user group 1 2007-11-19 04:17 second
drwxr-xr-x 2 user group 1 2007-11-19 04:17 third
/$

In addition to physical devices (local or networked), Linux supports several
pseudo filesystems (virtual filesystems) that behave like normal filesystems,



but do not represent actual persistent data, but rather provide access to system
information, configuration and devices. By using pseudo filesystems, operat-
ing system can provide more resources and services as part of the filesystem
namespace. There is a saying that nicely describes the advantages: "In UNIX,
everything is a file".

Examples of pseudo filesystems in Linux and their contents:

procfs Process filesystem, used to access process information from the kernel.
Usually mounted under /proc

devfs Used for presenting device files, e.g. devices as files. An abstraction
for accessing I/O an peripherals. Usually mounted under /dev

sysfs Information about devices and drivers from the kernel, also used for
configuration. Usually mounted under /sys

Using pseudo filesystems provides a nice way to access kernel data and
several devices from userspace processes using same API and functions than
with regular files.

Most of the Linux distributions (as well as maemo platform) also follow
the Filesystem Hierarchy Standard (FHS) quite well. FHS is a standard which
consists of a set of requirements and guidelines for file and directory placement
under UNIX-like operating systems 1.3.
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Figure 1.3: Example of filesystem hierarchy



The most important directories and their contents:
/bin Essential user command binaries that need tobe available alsoin single user mode.
/sbin Essential system binaries (e.g. init, insmod, ifup)
/lib Libraries for the binaries in /bin and /sbin
Just/bin Non-essential user command binaries thatare notneeded in single user mode
[usr/sbin Non-essential system binaries (e.g. daemons for network-services)
[usr/lib Libraries for the binaries in /ust/bin and /ust/sbin
[etc Host-specific system-wide configuration files
/dev Device files
/home User home directories (optional)
[proc Virtual file system documenting kernel and process status as text files

More information about FHS can be found from its” homepage at path-
name.com/fhs/.

1.6 Files and inodes

For most users understanding the tree-like structure of the filesystem names-
pace is enough. In reality, things get more compilated than that. When a phys-
ical storage device is taken into use for the first time, it must be partitioned.
Every partition has its own filesystem, which must be initialized before first
usage. By mounting the initialized filesystems, we can form the tree-structure
of the entire system.

When a filesystem is created to partition, a data structures containing infor-
mation about files are written into it. These structures are called inodes. Each
file in filesystem has an inode, identified by inode serial number.

Inode contains the following information of the file:

Owner Owner of the file

Group Group owner of the file

Permissions File permissions, more on these to follow

Last read time Time when file was last accessed (atime)

Last change time Time when file was last modified (mtime)

Inode change time Time when inode itself was last modified (ctime)
Hard links Number of hard links to this file

Size The length of the file in bytes

Address Pointer to the actual content data of the file


http://www.pathname.com/fhs/
http://www.pathname.com/fhs/

The only information not included in an inode is the file name and direc-
tory. These are stored in the special directory files, each of which contains one
filename and one inode number. The kernel can search a directory, looking for
a particular filename, and by using the inode number the actual content of the
inode can be found, thus allowing the content of the file to be found.

Inode information can be queried from the file using stat command:

user@system:~$ stat /etc/passwd

File: ‘/etc/passwd’

Size: 1347 Blocks: 8 I0 Block: 4096 regular file
Device: 805h/2053d Inode: 209619 Links: 1
Access: (0644/-rw-r--r--) Uid: ( 0/ root) Gid: ( 0/ root)
Access: 2007-11-23 06:30:49.199768116 +0200

Modify: 2007-11-17 21:27:02.271803959 +0200
Change: 2007-11-17 21:27:02.771832454 +0200

Notice that the stat command shown above is from desktop Linux, as

maemo platform does not have stat -command by default.
Some advantages of inodes:

e Multiple filenames can be associated with the same inode. This is called
hard linking or just linking. Notice that hard links only work within
one partition as the inode numbers are only unique within a given parti-
tion.

e As processes open files, the kernel converts the filename to an inode
number at the first possible chance, thus moving the file (within same
partition) does not prevent a process from accessing the file once it is
opened (as long as the process knows the inode number).

In addition to hard links, Linux filesystem also supports soft links, or
more commonly called, symbolic links (or for short: symlinks). A symbolic
link contains the path to the target file instead of a physical location on the
hard disk. Since symlinks do not use inodes, symlinks can span across the
partitions. Symlinks are transparent to processes which read or write to files
pointed by a symlink, process behaves as if operating directly on the target file.

1.7 File access permissions

The Linux security model is based on the UNIX security model. Every user on
the system has an user ID (UID) and every user belongs to one or more groups
(identified by group ID, GID). Every file (or directory) is owned by a user and a
group user. There is also a third category of users, others, those are the users
that are not the owners of the file and do not belong to the group owning the
file.

For each of the three user categories, there are three permissions that can
either be granted or denied:

Read (r) Whether the file may be read. In the case of a directory, the ability to
list the contents of the directory.

Write (w) Whether the file may be written to or modified (includes deleting
and renaming).



Execute (x) Whether the file may be executed. In the case of a directory, the
ability to enter to or execute program from that directory.

The file permissions can be checked simply by issuing a 1s -1 command:

/ $ 1s -1 /bin/ls

-rwxr-xr-x 1 root root 78004 2007-09-29 15:51 /bin/ls

/ $ 1s -1 /tmp/test.sh

-rwxrw-r-- 1 user users 67 2007-11-19 07:13 /tmp/test.sh

The first 10 characters in output describe the file type and permission flags
for all three user categories:

o First character tells the file type (- means regular file, d means directory,
1 means symlink)

o Characters 2-4 display the access rights for the actual owner of the file
(- means denied)

o Characters 5-7 display the access rights for the group owner of the file (-
means denied

e Character 8-10 display the access rights for other users (- means denied)

The output also lists the owner and the group owner of the file, in this order.

Let us look closer what this all means. For the first file, /bin/ls, the owner
is root and group owner is also root. First three characters (rwx) indicate
that owner (root) has read, write and execute permissions to the file. Next three
characters (r-x) indicate that the group owner hasread and execute permissions.
Last three characters (r-x) indicate that all other users have read and execute
permissions.

The second file, /tmp/test.sh, is owned by user and group owned by users
belonging to users group. For user (owner) the permissions (rwx) are read,
write and execute. For users in users group the permissions (rw-) are read and
write. For all other users the permissions (r-) are only read.

File permissions can also be presented as octal values, where every user cate-
gory is simply identified with one octal number. Octal values of the permission
flags for one category are just added together using following table:

Octal value Binary presentation
Read access 4 100
Write access 2 010
Execute access 1 001
Example: converting "rwxr-xr--" to octal:
First group "rwx" =4+ 2 + 1 =7
Second group "r-x" =4 + 1 =5
Third group "r--" = 4 =4
So "rwxr-xr--" becomes 754

As processes run effectively with permissions of the user who started the
process, the process can only access the same files as the user.

Root-account is a special case: Root user of the system can override any
permission flags of the files and folders, so it is very adviseable to not run
unneeded processes or programs as root user. Using root account for anything
else than system administration is not recommended.
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1.8 Programs, daemons and libraries

As we earlier stated, processes are programs executing in the system. Processes
are, however, also a bit more than that: They also include set of resources such
as open files, pending signals, internal kernel data, processor state, an address
space, one or more threads of execution, and a data section containing global
variables. Processes, in effect, are the result of running program code. A
program itself is not a process. A process is an active program and related
resources.

Threads are objects of activity inside the process. Each thread contains a
program counter, process stack and processor registers unique to that thread.
Threads require less overhead than forking a new process because the system
does not initialize a new system virtual memory space and environment for the
process. Threads are most effective on multi-processor or multi-core systems
where the process flow can be scheduled to run on another processor thus
gaining speed through parallel or distributed processing.

Daemons are processes that run in the background unobtrusively, without
any direct control from a user (by disassociating the daemon process from the
controlling TTY). Daemons can perform various scheduled and non-scheduled
tasks and often they serve the function of responding to the requests from other
computers over a network, other programs or hardware activity. Daemons have
usually init as their parent process, as daemons are launched by forking a
child and letting the parent process die, in which case init adopts the process.
Some examples of the daemons are: httpd (web server), Ipd (printing service),
cron (command scheduler).

Linking refers to combining a program and its libraries into a single exe-
cutable and resolving the symbolic names of variables and functions into their
resulting addresses. Libraries are a collection of commonly used functions
combined into a package.

There are few types of linking:

Static linking Static linking copies a set of routines to the executable target
application, thus expanding the target executable size.

Dynamic linking Dynamic linking means that the subroutines of a library
are loaded into an application program at runtime. Dynamic libraries
remain on filesystem as separate files from executable. Most of the work
of linking is done at the time the application is loaded, thus creating a bit
of overhead in application startup time.

Run-time linking Run-time linking (or dynamic loading) is a subset of dy-
namic linking where a dynamically linked library loads or unloads at
run-time on request.

In addition to being loaded statically or dynamically, libraries can also be
shared. Dynamic libraries are almost always shared, static libraries can not be
shared at all. Sharing allows same library to be used by multiple programs at
the same time, sharing the code in memory.

Dynamic linking of shared libraries provides multiple benefits:

e Common code of the applications is shared at runtime, which reduces the
total memory usage.
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e Application executable file size is reduced, which reduced the total stor-
age usage.

e Fixing a bug from shared code fixes the bug from all the applications
using the same code.

Most Linux systems use almost entirely dynamic libraries and dynamic
linking.

1.9 Decomposition of a simple command-line pro-
gram

Below is an image which shows the decomposition of a very simple command-
line-program in Linux, dynamically linking only to glibc (and possibly Glib).
As Glib is so commonly used in addition to standard C library (glibc), those
libraries have been drawn to one box, altough they are completely separate
libraries. The hardware devices are handled by the kernel and the program
only accesses them through the system call (syscall) interface.

Simple command-line
application

)

Iy

Dynamic linking

i
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glibe (GNU C Library) & Glib
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Syscall
¥
Kernel
[ Device l Device l [ Device l

Figure 1.4: Decomposition of a simple command-line program
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