
Maemo Diablo What is Maemo

Training Material

February 9, 2009



Contents

1 What is Maemo 2
1.1 What is this thing called maemoTM? . . . . . . . . . . . . . . . . 2
1.2 Internet Tablet overview . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Maemo runtime environment . . . . . . . . . . . . . . . . . . . . 5
1.4 X Window System . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Typical maemo GUI application . . . . . . . . . . . . . . . . . . . 10
1.6 Battery Doesn’t Last Forever! . . . . . . . . . . . . . . . . . . . . 12
1.7 maemo development resources . . . . . . . . . . . . . . . . . . . 13
1.8 Other programming interfaces . . . . . . . . . . . . . . . . . . . 14

1



Chapter 1

What is Maemo

1.1 What is this thing called maemoTM?

Maemo is an open source development platform for Internet Tablets. It means
the collection of software that is used to develop and test software for the
Internet Tablet-class devices, the first of which was the Nokia 770. It was later
followed by the Nokia N800 and the Nokia N810. In this material we will
be referring to all of these devices as Internet Tablets. Maemo is a registered
trademark of Nokia Corporation.

This version of the material covers maemo SDK version 4.1.x as well as
Nokia N800 and Nokia N810 Internet Tablets running OS2008.

Figure 1.1: Nokia N800

2



For a programmer, the Internet Tablets are really interesting as so much
in them is based on free software and thus it’s possible to use the same tools
that are used in normal software development on other free and open source
environments.

If you’re coming from the Windows-world, or even the Symbian-world,
this might be a new kind of encounter for you. All the tools, libraries and
development processes that are used in maemo are equally used and applied
in the desktop application arena, as well as for building server software. This
is in part due to the GNU project (gnu.org), which has implemented a lot of
the tools infrastructure in a highly portable way. The main graphical interface
libraries come from the GNOME project (gnome.org), which is one of the most
popular graphical environments used in Linux distributions.

By reusing existing portable and tested tools, we gain in an accelerated
application development time. This also means that we can take the tool-set
and apply it for writing software for embedded systems.

1.2 Internet Tablet overview

The devices are smaller than a laptop, larger than a PDA, and quite light-
weight. Some of them (Nokia N810) have a small keyboard, and all of them
have a stylus and a touch-sensitive screen. The stylus-driven GUI will cause
some design challenges later on, since your software will need to be designed
this in mind. There is also a possibility of using an on-screen keyboard with
the stylus and this includes a hand-writing recognition and a predictive input
system to aid the user. In all devices, there is a limited set of hardware buttons
available for applications.

Figure 1.2: The Virtual Keyboard (VKB)

As programmers appreciate knowing a bit about the fundamentals of the

3

http://www.gnu.org/
http://www.gnome.org/


devices for which they program, table 1.1 presents a short list of the most
important components.

N800 N810 N810 WiMax Edition
an 800x480 pixel, 225 pixels-per-inch (PPI) wide-screen touch screen display
with 16-bits per pixel color depth
Hardware buttons with a layout optimised for Web surfing
Virtual Keyboard Small slide-out keyboard (& VKB)
Wi-Fi (802.11b/g)

WiMAX 802.16e /
2.5GHz

External GPS via Blue-
tooth

Integrated GPS (external also supported)

1500 mAh battery
3.5 mm stereo audio out socket (works also as mic input on N800/N810)
Built-in VGA resolution webcam
USB 2.0 port (in target mode by default)
128 MiB of RAM
256 MiB flash memory with JFFS2 filesystem
Two memory card slots,
SD, MicroSD, MiniSD,
MMC, and RS-MMC
(some types with exten-
der).

One memory card slot, compatible with MiniSD
and MicroSD (with extender).

Bluetooth 2.0
TI OMAP 2420 multi-core processor with maximum clock frequency of 400
MHz, with:

• TMS320C55x DSP logic (Backward compatibility with the 54x-series)

• ARM1136 core ("ARMv6") with an MMU (Backward compatibility with
ARM926)

Table 1.1: Internet Tablet components

The USB port normally acts as a USB target, although the direction can be
reversed, and the device can be the USB host (i.e. initiator). The port is not
capable of providing USB power, so an external power feed is necessary. This
allows various usage scenarios, when the R&D mode is enabled on a device.
The default version of Internet Tablet software runs in target mode only.

Some noteworthy points about the hardware and software:

• There is not a lot of RAM (compared to a "PC"), and the memory is shared
between all the applications that are executing at any given time.

• The system runs a modified Linux kernel 2.6 (omap-port).

• The system library is GNU libc 2, meaning that most software can be
ported without too much effort (even networking software).

4

http://en.wikipedia.org/wiki/Nokia_N800
http://en.wikipedia.org/wiki/Nokia_N810
http://en.wikipedia.org/wiki/Nokia_N810#Nokia_N810_WiMAX_Edition


• To conserve battery power, one needs to be careful with application core
logic (loops, delays, timeouts, threads etc.)

• There is no hardware acceleration for graphics operations (2D or 3D).

• The built-in flash contains approximately 64 MiB of shipped software.
This means that about 192 MiB is available to be shared between applica-
tions.

• The built-in flash uses a filesystem specifically designed for flash memory,
and contains transparent compression and decompression. This means
that sometimes optimising for space requirements is not sensible. Com-
pressing an image as a .gif is not very good idea, as it would have been
compressed anyhow. However, the RS-MMC card uses FAT/VFAT filesys-
tem. The compression rates may vary, and if space conservation is im-
portant for an application, it is advisable to test the specific use scenario
properly.

• There is some support for Java acceleration in the ARM core, but this is
not utilised, since there is no supported JVM to execute Java code.

N.B. The above feature list holds for the "end user" version of the software
that is shipped with Internet Tablets.

1.3 Maemo runtime environment

Below is a table of the software "stack" for the maemo platform:

5



Applications

Fonts Sounds Icons

Connectivity System
UI

Search Text Input MIME
Types

Home Applets Control Panel Task Navigator Status
Bar

Backup Installer Alarm Help Launcher

XML E-D-S Telepathy GConf

GStreamer GnomeVFS GSF

Sapwood Hildon Widgets Hildon File UI HTML
Widget

GTK+

GDK GdkPixbuf

Pango Cairo Atk

GLib GObject

Samba GPS Obex ConIC UPnP JPEG
PNG
TIFF
SVG

Matchbox

D-BUS HAL SQLite curl
HTTP

Clipboard

SSL System SW Cert.
mgnt

libosso X

Libstd C++ Compression dpkg apt Freetype Fontconfig

Sysvinit Base
Files

Busybox GNU C
Library

Core Libs Core
Utils

Core
Daemons

BlueZ Power mgnt WLAN
security

ALSA Video4-
Linux

Bootloader Linux kernel including JFFS2, TCP/IP InitFS in-
cluding
uClibc
dsme

We’ll start from the bottom layer and go upwards by covering the services:

Linux 2.6 kernel Processes hardware events, system-wide memory allocation,
process creation and everything that you would expect from a modern
multi-tasking UNIX-like kernel. Not covered in this material.

X Server A program that implements access to the graphics hardware and
converts HID (human interface device) events from the kernel into events
for the X server’s clients. Explained shortly.

D-Bus A service that allows related processes to pass events to each other. The
service runs as a daemon, which is a process that runs in the background.

6

http://xmlsoft.org/
http://www.gnome.org/projects/evolution/arch.shtml
http://telepathy.freedesktop.org/wiki
http://www.gnome.org/projects/gconf/index.html
http://gstreamer.freedesktop.org/
http://library.gnome.org/devel/gnome-vfs-2.0/unstable
http://library.gnome.org/devel/gsf/unstable/index.html
http://freshmeat.net/projects/libgtkhtml
http://freshmeat.net/projects/libgtkhtml
http://www.gtk.org/
http://en.wikipedia.org/wiki/Gdk
http://library.gnome.org/devel/gdk-pixbuf/unstable/index.html
http://www.pango.org/
http://cairographics.org/
http://en.wikipedia.org/wiki/Accessibility_Toolkit
http://en.wikipedia.org/wiki/GLib
http://library.gnome.org/devel/gobject/unstable
http://u3.samba.org/samba
http://gpsd.berlios.de/
http://sourceforge.net/projects/openobex
http://www.cybergarage.org/net/upnp/c/index.html
http://en.wikipedia.org/wiki/Jpeg
http://en.wikipedia.org/wiki/Png
http://en.wikipedia.org/wiki/Tiff
http://librsvg.sourceforge.net/
http://matchbox-project.org/
http://www.freedesktop.org/wiki/Software/dbus
http://www.freedesktop.org/wiki/Software/hal
http://www.sqlite.org/
http://curl.haxx.se/
http://curl.haxx.se/
http://www.freedesktop.org/wiki/Software/dbus
http://x.org/
http://en.wikipedia.org/wiki/Libstdc++
http://en.wikipedia.org/wiki/Dpkg
http://en.wikipedia.org/wiki/Advanced_Packaging_Tool
http://www.freetype.org/
http://www.fontconfig.org/
http://en.wikipedia.org/wiki/Sysvinit
http://busybox.net/
http://www.gnu.org/software/libc
http://www.gnu.org/software/libc
http://www.bluez.org/
http://www.alsa-project.org/
http://www.thedirks.org/v4l2
http://www.thedirks.org/v4l2
http://en.wikipedia.org/wiki/Linux_kernel
http://en.wikipedia.org/wiki/Jffs2
http://en.wikipedia.org/wiki/Tcp/ip
http://www.uclibc.org/


The D-Bus daemon also passes important events from the core system to
applications (e.g., "battery low"). Interfacing with D-Bus is an important
part of integrating your application with the runtime environment. D-Bus
was developed to provide a message bus for Linux desktop applications,
the D comes from "Desktop". In fact, normally one would have at least
two daemons, one that processes and sends system level events and one to
allow related processes to communicate with each other inside one user’s
graphical session. D-Bus is more thoroughly covered in the "maemo
Platform Development" material.

X window manager (customised Matchbox) Controls where the graphical ap-
plications’ windows will be placed.

Task navigator Graphical program that is used to switch between applications.
Always running, even if your application will be full-screen (Task nav-
igator will be invisible in this case). Appears on left side of the screen
when applications are not running in full-screen mode.

Home/Desktop A graphical program that implements a user-selectable back-
ground picture. Also provides space for applets which are small programs
that draw on the background some useful (or not) information to the user.
Applets are not covered in this material.

Status bar Implements the top-right area of the screen that holds the various
plug-ins that indicate status and allow the user to easily change settings.
Together with Task navigator and Home/Desktop, implements the screen
that the user will see when the device has started.

Sapwood A daemon that caches images used to implement the overall graph-
ical look and feel for applications designed for maemo. Used in the
background by the GTK+ library.

Control panel A simple application for most system configuration tasks. It is
possible to write your own Control panel plug-ins by making them dy-
namically loadable objects which the Control panel will load on demand.
Not covered in this material.

7



Figure 1.3: Task navigator, Home and Status bar. Also shown are the icons (the
GNU heads) of the hello-world-app package.

1.4 X Window System

This is a short and simplified introduction to the X Window System. It is covered
here because it is the underlying system by which graphics and user interaction
is implemented in both the maemo platform and the Internet Tablets.

The X Window System is an architecture independent client/server system
that allows multiple programs to interact with a user via a graphical (pixel-
based) screen, keyboard and a pointing device (traditionally a mouse).

The program that wants to display something to the user, and read input
from the user is called the X client. Each X client connects to one X server
which will perform the requested graphics operations and will relay keyboard
and pointer events back to the client.

When speaking about clients and servers, it’s easy to make the mistake of
reversing the meaning of client and server. It helps to think about the roles
from the standpoint of the application, not the user. When the client starts, it
will connect to some X server to create a window. A window is a rectangular
area into which the client can draw. Note that the client can ask the server to
position the window at some screen location, but normally doesn’t. There is
a special kind of client that will handle the placement of the windows of all
other clients. This client is called the window manager. The window manager
usually draws some graphical elements around each client’s window, so that
the user can more easily tell the boundaries between the windows. It also
handles all HID-events in the window decoration areas, implements window
minimising, closing, etc. The HID-events that occur within the client area of
the window are passed to the client.

There are a lot of different window managers, but most work in similar
ways. The "Desktop" (whatever the word means inside a computer) is normally

8



implemented by yet another client. And yes, the taskbar that you might see is
yet another client. Even the screen saver is a separate client. In the real world
there are some exceptions to the above arrangement, but having separate clients
for all the elements is the most common case.

The protocol that clients use with the server is called X11. It is stream-based
and bi-directional (for obvious reasons).

Clients can commonly connect to the server in two ways:

• By connecting to an IP address / TCP port on which the server is listening.

• By connecting locally using a UNIX domain socket. A UNIX domain
socket is similar to TCP, but without the network in between, and the
client will find the server using a name in the filesystem (note that this
name does not correspond to a "regular" file).

How does the client know where to connect? By using an environmental
variable called DISPLAY. There are only a handful of applications that know how
to implement the X11-protocol, because it’s quite complicated to encode and
decode. Normally clients will use a library called Xlib, which was developed
for this purpose. Xlib also contains the logic to read the DISPLAY-variable and
will get the address to connect to from the contents of the variable. It is also
possible to tell the client to use a specific display via a command line parameter
(--display=). The parameter will be processed internally by Xlib and override
the environmental variable (if any).

The content of the DISPLAY-variable consists of two parts:

Hostname a text field that contains a name that will go through agethostbyname
library call. In practise this is most often a DNS-name or an IP-address of
the server, but depending on local NSS (Name Service Switch) be some-
thing else as well. This material will assume that DNS or IP will be
used.

Display/Screen-pair number of the X server instance, and a number of a screen
within that instance. Normally 0 is the only X server instance you have
and it will number its screens starting from 0. You may also omit the
screen number and 0 will be used by default.

So, for example: DISPLAY=remote.machine.com:0.0 would mean the first
screen on the first X server running on remote.machine.com. When starting an
X server, you normally can tell it which screen to create and control.

Wait a moment! What about the "similar to TCP but not quite" UNIX domain
socket? Xlib will connect using a system specific filesystem path when the
hostname-portion is empty. You can try it out on your Linux desktop like this:
type echo $DISPLAY in a terminal emulator. Your graphical terminal emulator
will connect to your X server knowing the DISPLAY-variable. It most probably
is :0.0 unless you have a more complicated system (e.g., split dual-head).

To instruct an X client to connect to another X server, it’s then necessary to
modify the environmental variable: export DISPLAY=:2.0 for example. Then
start your X client and it will at least try to connect to the X server specified. In
the example above the server is running on the same system as the client (the
hostname part is empty). Since the screen part is optional, you may also use
export DISPLAY=:2 .

9



You might be wondering what all of this has to do with maemo, but you’ll
see in a short while when we install the environment and start testing the
applications.

In the case that you skipped the intro, this is a good point to remind you
that X11 is architecture independent. This means that applications running
on Internet Tablets (ARM-binaries) can connect to an X server running on a
x86/PC Linux (or even to an X server running on Apple OS X, Windows or
other operating systems).

As a side note, the Internet Tablet has an X server as well. It runs as :0.0.
It is a special version of an X server that requires less memory and has been
configured to support most of the extensions used on the Linux desktop. The
version on Internet Tablet is based on the Kdrive version of the X.Org X server
(yes, so many versions). However, your Linux desktop is running a regular
X.Org server.

Also note that by default most modern Linux distributions ship with the
X server not listening for network connections. They will only accept local
connections through the UNIX domain socket (/tmp/.X11-unix/X0where 0 is
server screen number).

For more information on X, please see the X.Org-project pages (x.org) and
rahul.net/kenton/xsites.framed.html. Also, ssh can be used to tunnel X11 con-
nections securely over networks. Please see X Over SSH2 Tutorial for examples.

1.5 Typical maemo GUI application

We next take a look at the components making up a typical GUI application
developed for maemo (starting from the bottom):

C library Implements wrappers around the system calls to the kernel and a lot
of other useful stuff. However, the libraries presented below also provide
their own APIs to similar functions, so you should always check whether
you can use them directly, and avoid doing POSIX-level and system-level
calls when possible. This will make your application easier to debug and
in some cases easier understand. This library is used (indirectly at least)
by every application running on any Linux-based system. Not really
covered in this material since most of the things that we need are in the
higher-level libraries.

Xlib A library that allows an application to send graphics-related commands
to the X server and receive HID events from the server. Normally an
application wouldn’t use Xlib API directly but would instead use some
easier toolkit which in turn will use Xlib. Not covered in this material
other than the introduction and on a "need to know"-basis.

GLib An utility library that provides portable types, an object oriented frame-
work (GObject/GType), a general event mechanism (sometimes referred
to as GSignal), common abstract data structure types like hash tables,
linked lists, etc.

GDK A library that abstracts the Xlib and provides a lot of convenience code to
implement most common graphical operations. Used by an application

10

http://www.x.org/
http://www.rahul.net/kenton/xsites.framed.html
http://www.vanemery.com/Linux/XoverSSH/X-over-SSH2.html


which wants to implement drawing directly, for example in order to
implement custom widgets. In theory, GDK is meant to be graphics
system independent and mostly is. Complete abstraction however is not
yet complete, but for us the original Xlib target will be enough. GDK Uses
GLib internally.

Pango A portable library designed to implement correct and flexible text layout
for various cultures around the world. This is necessary to support the
different ways that people read and write text, since it’s not always from
top-to-bottom and left-to-right. Uses GLib and GDK. Used by GTK+ for
all displayed text. Covered only where necessary in this material.

ATK The Accessibility ToolKit. Provides generic methods by which an ap-
plication can support people with special needs with respect to using
computers. Not covered in this material.

GTK+ A library that provides a portable set of graphical elements, graphical
area layout capabilities and interaction functions for applications. Graph-
ical elements in GTK+ are called widgets. GTK+ also supports the notion
of themes, which are user switchable sets of graphics and behaviour mod-
els. These are called skins in some other systems. Uses GLib, GDK, Pango
and ATK.

Hildon A library containing widgets and themes designed specifically for
maemo. This is necessary since the screen has very high PPI (compared
to "PCs") and applications are sometimes controlled via a stylus. Uses all
of the libraries above.

Other support libraries of interest:

GConf A library from the GNOME-project that allows applications to
store and retrieve their settings in a consistent manner (in a way,
similar to the registry in Windows). Uses GLib. Basic operations are
covered in this material.

GnomeVFS A library that provides a coherent set of file access functions
and implements those functions using plug-in libraries for different
kinds of files and devices. Allows the application to ignore the
semantics of implementations between different kind of devices and
services. By using GnomeVFS, an application doesn’t need to care
whether it will read a file coming from a web server (URLs are
supported), or from within an compressed file archive (.zip, .rpm,
.tar.gz, etc.) or a memory card. Modeled to follow POSIX-style
file and directory operations. Basic operations are covered in this
material.

GDK-Pixbuf A library that implements various graphical bitmap for-
mats and also alpha-channeled blending operations using 32-bit pix-
els (RGBA). The Application Framework uses pixbufs to implement
the shadows and background picture scaling when necessary. Uses
GLib and GDK.

LibOSSO A library specific to the maemo platform that allows an ap-
plication to connect to D-Bus in a simple and consistent manner.

11



Also provides an application state serialisation mechanism. This
mechanism can be used by an application to store its state so that
it can continue from the exact point in time when user switched to
another application. Useful to conserve battery life on portable de-
vices. Only basic parts of LibOSSO are covered in this material and
more advanced use is covered in "maemo Platform Development"
material.

Whew, that was quite a list. As you can imagine, an introductory material
like this cannot even try to cover all the possibilities or the API functions
available in these libraries. We will try to do our best describing the bare
minimum in order for you to start writing applications for maemo.

There are some caveats related to API changes between major GTK+ ver-
sions, which will be mentioned in the text, so do not go and copy-paste existing
code blindly. Also this is a good place to remind you that most of the source
code that you can find easily is covered by either the GPL or LGPL licenses.
This material tries to stay away from legalese, but to put it bluntly, you cannot
copy GPL-ed source code into your proprietary projects (i.e., closed source).
This is against the license. GPL considers static linking as distribution (copy-
ing) too. Even linking dynamically from proprietary code against GPL-ed
libraries might be interpreted as prohibited by the license!

Note that it is normally allowable to read and learn from GPL-ed source
code. Indeed, unless you’re copying line by line from existing code base, this
can be an invaluable tool to learn how things are done in the "real world". This
is quite the opposite when reading proprietary source code as there is a risk of
learning something that the code owner will consider "intellectual property".
If you then use this "knowledge" in a free or open source project, you risk
polluting that project with unnecessary legalese.

As a side note, you might be interested to learn that almost all of the
GNOME-libraries are released under the LGPL-license. This means that you
can create proprietary software which will link into LGPL-libraries dynami-
cally at runtime. If you however modify the LGPL-library, the modifications
must be available in source form to the entities you distribute the binaries to
under the original license (LGPL).

1.6 Battery Doesn’t Last Forever!

Low power consumption is one of main hardware design goals with mobile
devices because of the limited electric charge in their power supplies. If the
hardware is designed correctly, it may itself contain logic and rules to enter
different power saving states. To enter these power saving states the hardware
requires that there is no activity in the system, in other words, there is no task
ready to be run by the OS kernel scheduling mechanism. Even if power saving
functionality is implemented in the hardware, activating it might not always be
possible. If the applications running on the hardware are "misbehaving", then
the system will be active all of the time and this makes it impossible for the
power saving features to be activated at hardware level. Some of these power
saving features include: changing the clock frequency dynamically, supporting
multiple operating voltages and switching integrated peripherals’ sleep modes.

12



Different parts of the hardware will require different amounts of power
to run. The following pie diagram is not based on any real measurements
but roughly shows how power consumption is distributed between different
subsystems in a device:

Figure 1.4: Diagram of power consumption in Mobile Devices

Keep the previous diagram in mind when you consider your application’s
"electricity needs". For example, in a GPS mapping application, the GUI inter-
face is a graphical map with the position and other relevant information. If such
display would keep the backlight active all the time, it would cause excessive
power usage. In this case, it might be prudent to ask the user whether they
really want to keep the backlight on, or provide a user-controllable button for
switching the backlight on/off.

When designing for mobile devices, it’s important that you (as the appli-
cation designer) consider different approaches to problems. You should also
consider system-wide power usage, i.e., how your application will change the
power performance of the device. The above diagram might seem rather ob-
vious, but it is often too tempting to start premature optimisation of memory
usage or code speed, and forget about power optimisation. In mobile environ-
ments, all three are important.

1.7 maemo development resources

maemo has its own website (at maemo.org), which includes:

• Links to mailing lists (and their archives)

• Link to the defect tracking system (bugzilla) at bugs.maemo.org

• White papers and tutorials

13

http://maemo.org
https://bugs.maemo.org


• Licenses used

• Trademark usage guidelines

• Development news

• Download information

• API references library versions used in maemo SDK

• The maemo wiki and other community supported resources (garage)

There is also an IRC channel for developers (#maemo@FreeNode). You
can find people related to Scratchbox and maemo hanging there lot of times.
Scratchbox also has its own channel.

Note that everything you discuss on the IRC channel and mailing lists (as
well as bugs you post using bugzilla) is *public information*. You might want to
ask someone whether your working environment has a policy on using public
resources before using them.

1.8 Other programming interfaces

Using the previously presented software library stack is not the only possi-
bility. The platform also includes SDL (Simple DirectMedia Layer) which is
a library that was originally developed by Loki Entertainment, a company
that specialised in creating Linux-versions of popular commercial games. It
contains most of the code necessary to write games and implement low-level
graphics. SDL is not covered by this material, but you can find the API (and
other) documentation at libsdl.org .

If you like to work with APIs that are hard to understand, you can use
the Xlib-interface and implement your interactive program directly with it (not
recommended for the faint hearted).

Using either SDL or Xlib is not directly supported by the environment and
will lead to applications which will not conform to the "look and feel" common
to applications designed for maemo. Such problems should be avoided so that
end-users do not get confused (they would expect an uniform interface for all
the applications they use). You won’t be able to utilise the virtual keyboard or
handwriting recognition in your application either. For some full-screen pointer
driven games this might not be a big issue, but for "normal" GUI applications
that the user will enter data and text, it is an issue.

It is also be possible to use the Python programming language to write
GUI programs (there are bindings for the Hildon toolkit as well) and there are
community driven projects for using Ruby and Vala as well as others.

14

http://www.libsdl.org/
http://pymaemo.garage.maemo.org/
http://maemo.rubyx.co.uk/ruby-maemo/
http://live.gnome.org/Vala

	What is Maemo
	What is this thing called maemo™?
	Internet Tablet overview
	Maemo runtime environment
	X Window System
	Typical maemo GUI application
	Battery Doesn't Last Forever!
	maemo development resources
	Other programming interfaces


