
Maemo Diablo Getting Started

Training Material

for maemo 4.1

February 9, 2009

Contents

1 Introduction 4
1.1 Introduction to Maemo Getting Started 4

2 What is Maemo 6
2.1 What is this thing called maemoTM? 6
2.2 Internet Tablet overview . 7
2.3 Maemo runtime environment . 9
2.4 X Window System . 12
2.5 Typical maemo GUI application 14
2.6 Battery Doesn’t Last Forever! . 16
2.7 maemo development resources 17
2.8 Other programming interfaces 18

3 Installing the SDK 19
3.1 Getting started . 19
3.2 What is Scratchbox? . 19
3.3 Scratchbox components . 20
3.4 Prerequisites . 21
3.5 Automatic install of Scratchbox 22
3.6 Manual install of Scratchbox . 22
3.7 Automatic install of the maemo SDK 22
3.8 Manual install of the maemo SDK 24
3.9 Manual install of the ARMEL target 27

4 Testing the installation 28
4.1 Testing Scratchbox . 28
4.2 Writing a GUI Hello World . 30
4.3 Running the GUI Hello World . 34
4.4 Starting virtual X server (Xephyr) 35
4.5 Directing the client to virtual server 36
4.6 Starting the Application Framework 37
4.7 Running Hello World in the AF 38

1

Preface

Legal notice

Copyright c©2007-2009 Nokia Corporation. All rights reserved.
Nokia and maemo are trademarks or registered trademarks of Nokia Cor-

poration. Other product and company names mentioned herein may be trade-
marks or trade names of their respective owners.

Disclaimer

The information in this document is provided "as is," with no warranties what-
soever, including any warranty of merchantability, fitness for any particular
purpose, or any warranty otherwise arising out of any proposal, specification,
or sample. This document is provided for informational purposes only. Nokia
Corporation disclaims all liability, including liability for infringement of any
proprietary rights, relating to implementation of information presented in this
document. Nokia Corporation does not warrant or represent that such use will
not infringe such rights. Nokia Corporation retains the right to make changes
to this material at any time, without notice.

Licenses

This training material is licensed under a Creative Commons Attribution-
Share Alike 3.0 License.

The code examples copyrighted by Nokia Corporation that are included to
this training material are licensed to you under following MIT-style License:

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

2

http://creativecommons.org/licenses/by-sa/3.0/

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICU-
LAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAM-
AGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFT-
WARE.

3

Chapter 1

Introduction

1.1 Introduction to Maemo Getting Started

Figure 1.1: Nokia N810

On the 25th of May 2005 Nokia released the first version of maemoTMsoftware
development kit to the public. After the first release, multiple updates have
been made to the SDK. The SDK is meant for software development with
the new Internet Tablet-class devices and this is the first time that a major

4

company is basing their commercial product so much on free software. Since
the underlying software in the devices consists of mainly open source software,
this makes the devices an attractive platform for which to write software. Basing
the SDK and the device on open source software also means that porting existing
software is fairly easy.

This material covers the basics of installing the maemo SDK version 4.1,
Diablo.

Pre-requisites for using this material effectively are: knowledge of C pro-
gramming in Linux-environment, basic knowledge about Debian command-
line tools and utilities used in software installation and development in Debian
based Linux systems.

The SDK contains a broad range of software which is in use in a lot of free
software projects. The material will however only cover the minimal amount
required to get you up and running with maemo development.

The material starts by covering the basic environment of the target devices
and then covers the range of tools to use and their best uses in software devel-
opment.

Where applicable, the material will also note the recommended develop-
ment and design practises, since the target devices are not "ordinary PCs".
If your background is working with restricted resource device environments,
you’ll already know most of these rules, but there are also some additional
hints sprinkled throughout the material.

More information about the maemo training material is available from
the maemo training wiki pages (http://wiki.maemo.org/MaemoTraining) main-
tained by maemo community. Notice that the information in maemo wiki is not
verified by Nokia and thus Nokia cannot be responsible of that information.

We hope that you will enjoy the environment, your imagination is the only
thing stopping you now!

5

http://wiki.maemo.org/Maemo_Training

Chapter 2

What is Maemo

2.1 What is this thing called maemoTM?

Maemo is an open source development platform for Internet Tablets. It means
the collection of software that is used to develop and test software for the
Internet Tablet-class devices, the first of which was the Nokia 770. It was later
followed by the Nokia N800 and the Nokia N810. In this material we will
be referring to all of these devices as Internet Tablets. Maemo is a registered
trademark of Nokia Corporation.

This version of the material covers maemo SDK version 4.1.x as well as
Nokia N800 and Nokia N810 Internet Tablets running OS2008.

Figure 2.1: Nokia N800

6

For a programmer, the Internet Tablets are really interesting as so much
in them is based on free software and thus it’s possible to use the same tools
that are used in normal software development on other free and open source
environments.

If you’re coming from the Windows-world, or even the Symbian-world,
this might be a new kind of encounter for you. All the tools, libraries and
development processes that are used in maemo are equally used and applied
in the desktop application arena, as well as for building server software. This
is in part due to the GNU project (gnu.org), which has implemented a lot of
the tools infrastructure in a highly portable way. The main graphical interface
libraries come from the GNOME project (gnome.org), which is one of the most
popular graphical environments used in Linux distributions.

By reusing existing portable and tested tools, we gain in an accelerated
application development time. This also means that we can take the tool-set
and apply it for writing software for embedded systems.

2.2 Internet Tablet overview

The devices are smaller than a laptop, larger than a PDA, and quite light-
weight. Some of them (Nokia N810) have a small keyboard, and all of them
have a stylus and a touch-sensitive screen. The stylus-driven GUI will cause
some design challenges later on, since your software will need to be designed
this in mind. There is also a possibility of using an on-screen keyboard with
the stylus and this includes a hand-writing recognition and a predictive input
system to aid the user. In all devices, there is a limited set of hardware buttons
available for applications.

Figure 2.2: The Virtual Keyboard (VKB)

As programmers appreciate knowing a bit about the fundamentals of the

7

http://www.gnu.org/
http://www.gnome.org/

devices for which they program, table 2.1 presents a short list of the most
important components.

N800 N810 N810 WiMax Edition
an 800x480 pixel, 225 pixels-per-inch (PPI) wide-screen touch screen display
with 16-bits per pixel color depth
Hardware buttons with a layout optimised for Web surfing
Virtual Keyboard Small slide-out keyboard (& VKB)
Wi-Fi (802.11b/g)

WiMAX 802.16e /
2.5GHz

External GPS via Blue-
tooth

Integrated GPS (external also supported)

1500 mAh battery
3.5 mm stereo audio out socket (works also as mic input on N800/N810)
Built-in VGA resolution webcam
USB 2.0 port (in target mode by default)
128 MiB of RAM
256 MiB flash memory with JFFS2 filesystem
Two memory card slots,
SD, MicroSD, MiniSD,
MMC, and RS-MMC
(some types with exten-
der).

One memory card slot, compatible with MiniSD
and MicroSD (with extender).

Bluetooth 2.0
TI OMAP 2420 multi-core processor with maximum clock frequency of 400
MHz, with:

• TMS320C55x DSP logic (Backward compatibility with the 54x-series)

• ARM1136 core ("ARMv6") with an MMU (Backward compatibility with
ARM926)

Table 2.1: Internet Tablet components

The USB port normally acts as a USB target, although the direction can be
reversed, and the device can be the USB host (i.e. initiator). The port is not
capable of providing USB power, so an external power feed is necessary. This
allows various usage scenarios, when the R&D mode is enabled on a device.
The default version of Internet Tablet software runs in target mode only.

Some noteworthy points about the hardware and software:

• There is not a lot of RAM (compared to a "PC"), and the memory is shared
between all the applications that are executing at any given time.

• The system runs a modified Linux kernel 2.6 (omap-port).

• The system library is GNU libc 2, meaning that most software can be
ported without too much effort (even networking software).

8

http://en.wikipedia.org/wiki/Nokia_N800
http://en.wikipedia.org/wiki/Nokia_N810
http://en.wikipedia.org/wiki/Nokia_N810#Nokia_N810_WiMAX_Edition

• To conserve battery power, one needs to be careful with application core
logic (loops, delays, timeouts, threads etc.)

• There is no hardware acceleration for graphics operations (2D or 3D).

• The built-in flash contains approximately 64 MiB of shipped software.
This means that about 192 MiB is available to be shared between applica-
tions.

• The built-in flash uses a filesystem specifically designed for flash memory,
and contains transparent compression and decompression. This means
that sometimes optimising for space requirements is not sensible. Com-
pressing an image as a .gif is not very good idea, as it would have been
compressed anyhow. However, the RS-MMC card uses FAT/VFAT filesys-
tem. The compression rates may vary, and if space conservation is im-
portant for an application, it is advisable to test the specific use scenario
properly.

• There is some support for Java acceleration in the ARM core, but this is
not utilised, since there is no supported JVM to execute Java code.

N.B. The above feature list holds for the "end user" version of the software
that is shipped with Internet Tablets.

2.3 Maemo runtime environment

Below is a table of the software "stack" for the maemo platform:

9

Applications

Fonts Sounds Icons

Connectivity System
UI

Search Text Input MIME
Types

Home Applets Control Panel Task Navigator Status
Bar

Backup Installer Alarm Help Launcher

XML E-D-S Telepathy GConf

GStreamer GnomeVFS GSF

Sapwood Hildon Widgets Hildon File UI HTML
Widget

GTK+

GDK GdkPixbuf

Pango Cairo Atk

GLib GObject

Samba GPS Obex ConIC UPnP JPEG
PNG
TIFF
SVG

Matchbox

D-BUS HAL SQLite curl
HTTP

Clipboard

SSL System SW Cert.
mgnt

libosso X

Libstd C++ Compression dpkg apt Freetype Fontconfig

Sysvinit Base
Files

Busybox GNU C
Library

Core Libs Core
Utils

Core
Daemons

BlueZ Power mgnt WLAN
security

ALSA Video4-
Linux

Bootloader Linux kernel including JFFS2, TCP/IP InitFS in-
cluding
uClibc
dsme

We’ll start from the bottom layer and go upwards by covering the services:

Linux 2.6 kernel Processes hardware events, system-wide memory allocation,
process creation and everything that you would expect from a modern
multi-tasking UNIX-like kernel. Not covered in this material.

X Server A program that implements access to the graphics hardware and
converts HID (human interface device) events from the kernel into events
for the X server’s clients. Explained shortly.

D-Bus A service that allows related processes to pass events to each other. The
service runs as a daemon, which is a process that runs in the background.

10

http://xmlsoft.org/
http://www.gnome.org/projects/evolution/arch.shtml
http://telepathy.freedesktop.org/wiki
http://www.gnome.org/projects/gconf/index.html
http://gstreamer.freedesktop.org/
http://library.gnome.org/devel/gnome-vfs-2.0/unstable
http://library.gnome.org/devel/gsf/unstable/index.html
http://freshmeat.net/projects/libgtkhtml
http://freshmeat.net/projects/libgtkhtml
http://www.gtk.org/
http://en.wikipedia.org/wiki/Gdk
http://library.gnome.org/devel/gdk-pixbuf/unstable/index.html
http://www.pango.org/
http://cairographics.org/
http://en.wikipedia.org/wiki/Accessibility_Toolkit
http://en.wikipedia.org/wiki/GLib
http://library.gnome.org/devel/gobject/unstable
http://u3.samba.org/samba
http://gpsd.berlios.de/
http://sourceforge.net/projects/openobex
http://www.cybergarage.org/net/upnp/c/index.html
http://en.wikipedia.org/wiki/Jpeg
http://en.wikipedia.org/wiki/Png
http://en.wikipedia.org/wiki/Tiff
http://librsvg.sourceforge.net/
http://matchbox-project.org/
http://www.freedesktop.org/wiki/Software/dbus
http://www.freedesktop.org/wiki/Software/hal
http://www.sqlite.org/
http://curl.haxx.se/
http://curl.haxx.se/
http://www.freedesktop.org/wiki/Software/dbus
http://x.org/
http://en.wikipedia.org/wiki/Libstdc++
http://en.wikipedia.org/wiki/Dpkg
http://en.wikipedia.org/wiki/Advanced_Packaging_Tool
http://www.freetype.org/
http://www.fontconfig.org/
http://en.wikipedia.org/wiki/Sysvinit
http://busybox.net/
http://www.gnu.org/software/libc
http://www.gnu.org/software/libc
http://www.bluez.org/
http://www.alsa-project.org/
http://www.thedirks.org/v4l2
http://www.thedirks.org/v4l2
http://en.wikipedia.org/wiki/Linux_kernel
http://en.wikipedia.org/wiki/Jffs2
http://en.wikipedia.org/wiki/Tcp/ip
http://www.uclibc.org/

The D-Bus daemon also passes important events from the core system to
applications (e.g., "battery low"). Interfacing with D-Bus is an important
part of integrating your application with the runtime environment. D-Bus
was developed to provide a message bus for Linux desktop applications,
the D comes from "Desktop". In fact, normally one would have at least
two daemons, one that processes and sends system level events and one to
allow related processes to communicate with each other inside one user’s
graphical session. D-Bus is more thoroughly covered in the "maemo
Platform Development" material.

X window manager (customised Matchbox) Controls where the graphical ap-
plications’ windows will be placed.

Task navigator Graphical program that is used to switch between applications.
Always running, even if your application will be full-screen (Task nav-
igator will be invisible in this case). Appears on left side of the screen
when applications are not running in full-screen mode.

Home/Desktop A graphical program that implements a user-selectable back-
ground picture. Also provides space for applets which are small programs
that draw on the background some useful (or not) information to the user.
Applets are not covered in this material.

Status bar Implements the top-right area of the screen that holds the various
plug-ins that indicate status and allow the user to easily change settings.
Together with Task navigator and Home/Desktop, implements the screen
that the user will see when the device has started.

Sapwood A daemon that caches images used to implement the overall graph-
ical look and feel for applications designed for maemo. Used in the
background by the GTK+ library.

Control panel A simple application for most system configuration tasks. It is
possible to write your own Control panel plug-ins by making them dy-
namically loadable objects which the Control panel will load on demand.
Not covered in this material.

11

Figure 2.3: Task navigator, Home and Status bar. Also shown are the icons (the
GNU heads) of the hello-world-app package.

2.4 X Window System

This is a short and simplified introduction to the X Window System. It is covered
here because it is the underlying system by which graphics and user interaction
is implemented in both the maemo platform and the Internet Tablets.

The X Window System is an architecture independent client/server system
that allows multiple programs to interact with a user via a graphical (pixel-
based) screen, keyboard and a pointing device (traditionally a mouse).

The program that wants to display something to the user, and read input
from the user is called the X client. Each X client connects to one X server
which will perform the requested graphics operations and will relay keyboard
and pointer events back to the client.

When speaking about clients and servers, it’s easy to make the mistake of
reversing the meaning of client and server. It helps to think about the roles
from the standpoint of the application, not the user. When the client starts, it
will connect to some X server to create a window. A window is a rectangular
area into which the client can draw. Note that the client can ask the server to
position the window at some screen location, but normally doesn’t. There is
a special kind of client that will handle the placement of the windows of all
other clients. This client is called the window manager. The window manager
usually draws some graphical elements around each client’s window, so that
the user can more easily tell the boundaries between the windows. It also
handles all HID-events in the window decoration areas, implements window
minimising, closing, etc. The HID-events that occur within the client area of
the window are passed to the client.

There are a lot of different window managers, but most work in similar
ways. The "Desktop" (whatever the word means inside a computer) is normally

12

implemented by yet another client. And yes, the taskbar that you might see is
yet another client. Even the screen saver is a separate client. In the real world
there are some exceptions to the above arrangement, but having separate clients
for all the elements is the most common case.

The protocol that clients use with the server is called X11. It is stream-based
and bi-directional (for obvious reasons).

Clients can commonly connect to the server in two ways:

• By connecting to an IP address / TCP port on which the server is listening.

• By connecting locally using a UNIX domain socket. A UNIX domain
socket is similar to TCP, but without the network in between, and the
client will find the server using a name in the filesystem (note that this
name does not correspond to a "regular" file).

How does the client know where to connect? By using an environmental
variable called DISPLAY. There are only a handful of applications that know how
to implement the X11-protocol, because it’s quite complicated to encode and
decode. Normally clients will use a library called Xlib, which was developed
for this purpose. Xlib also contains the logic to read the DISPLAY-variable and
will get the address to connect to from the contents of the variable. It is also
possible to tell the client to use a specific display via a command line parameter
(--display=). The parameter will be processed internally by Xlib and override
the environmental variable (if any).

The content of the DISPLAY-variable consists of two parts:

Hostname a text field that contains a name that will go through agethostbyname
library call. In practise this is most often a DNS-name or an IP-address of
the server, but depending on local NSS (Name Service Switch) be some-
thing else as well. This material will assume that DNS or IP will be
used.

Display/Screen-pair number of the X server instance, and a number of a screen
within that instance. Normally 0 is the only X server instance you have
and it will number its screens starting from 0. You may also omit the
screen number and 0 will be used by default.

So, for example: DISPLAY=remote.machine.com:0.0 would mean the first
screen on the first X server running on remote.machine.com. When starting an
X server, you normally can tell it which screen to create and control.

Wait a moment! What about the "similar to TCP but not quite" UNIX domain
socket? Xlib will connect using a system specific filesystem path when the
hostname-portion is empty. You can try it out on your Linux desktop like this:
type echo $DISPLAY in a terminal emulator. Your graphical terminal emulator
will connect to your X server knowing the DISPLAY-variable. It most probably
is :0.0 unless you have a more complicated system (e.g., split dual-head).

To instruct an X client to connect to another X server, it’s then necessary to
modify the environmental variable: export DISPLAY=:2.0 for example. Then
start your X client and it will at least try to connect to the X server specified. In
the example above the server is running on the same system as the client (the
hostname part is empty). Since the screen part is optional, you may also use
export DISPLAY=:2 .

13

You might be wondering what all of this has to do with maemo, but you’ll
see in a short while when we install the environment and start testing the
applications.

In the case that you skipped the intro, this is a good point to remind you
that X11 is architecture independent. This means that applications running
on Internet Tablets (ARM-binaries) can connect to an X server running on a
x86/PC Linux (or even to an X server running on Apple OS X, Windows or
other operating systems).

As a side note, the Internet Tablet has an X server as well. It runs as :0.0.
It is a special version of an X server that requires less memory and has been
configured to support most of the extensions used on the Linux desktop. The
version on Internet Tablet is based on the Kdrive version of the X.Org X server
(yes, so many versions). However, your Linux desktop is running a regular
X.Org server.

Also note that by default most modern Linux distributions ship with the
X server not listening for network connections. They will only accept local
connections through the UNIX domain socket (/tmp/.X11-unix/X0where 0 is
server screen number).

For more information on X, please see the X.Org-project pages (x.org) and
rahul.net/kenton/xsites.framed.html. Also, ssh can be used to tunnel X11 con-
nections securely over networks. Please see X Over SSH2 Tutorial for examples.

2.5 Typical maemo GUI application

We next take a look at the components making up a typical GUI application
developed for maemo (starting from the bottom):

C library Implements wrappers around the system calls to the kernel and a lot
of other useful stuff. However, the libraries presented below also provide
their own APIs to similar functions, so you should always check whether
you can use them directly, and avoid doing POSIX-level and system-level
calls when possible. This will make your application easier to debug and
in some cases easier understand. This library is used (indirectly at least)
by every application running on any Linux-based system. Not really
covered in this material since most of the things that we need are in the
higher-level libraries.

Xlib A library that allows an application to send graphics-related commands
to the X server and receive HID events from the server. Normally an
application wouldn’t use Xlib API directly but would instead use some
easier toolkit which in turn will use Xlib. Not covered in this material
other than the introduction and on a "need to know"-basis.

GLib An utility library that provides portable types, an object oriented frame-
work (GObject/GType), a general event mechanism (sometimes referred
to as GSignal), common abstract data structure types like hash tables,
linked lists, etc.

GDK A library that abstracts the Xlib and provides a lot of convenience code to
implement most common graphical operations. Used by an application

14

http://www.x.org/
http://www.rahul.net/kenton/xsites.framed.html
http://www.vanemery.com/Linux/XoverSSH/X-over-SSH2.html

which wants to implement drawing directly, for example in order to
implement custom widgets. In theory, GDK is meant to be graphics
system independent and mostly is. Complete abstraction however is not
yet complete, but for us the original Xlib target will be enough. GDK Uses
GLib internally.

Pango A portable library designed to implement correct and flexible text layout
for various cultures around the world. This is necessary to support the
different ways that people read and write text, since it’s not always from
top-to-bottom and left-to-right. Uses GLib and GDK. Used by GTK+ for
all displayed text. Covered only where necessary in this material.

ATK The Accessibility ToolKit. Provides generic methods by which an ap-
plication can support people with special needs with respect to using
computers. Not covered in this material.

GTK+ A library that provides a portable set of graphical elements, graphical
area layout capabilities and interaction functions for applications. Graph-
ical elements in GTK+ are called widgets. GTK+ also supports the notion
of themes, which are user switchable sets of graphics and behaviour mod-
els. These are called skins in some other systems. Uses GLib, GDK, Pango
and ATK.

Hildon A library containing widgets and themes designed specifically for
maemo. This is necessary since the screen has very high PPI (compared
to "PCs") and applications are sometimes controlled via a stylus. Uses all
of the libraries above.

Other support libraries of interest:

GConf A library from the GNOME-project that allows applications to
store and retrieve their settings in a consistent manner (in a way,
similar to the registry in Windows). Uses GLib. Basic operations are
covered in this material.

GnomeVFS A library that provides a coherent set of file access functions
and implements those functions using plug-in libraries for different
kinds of files and devices. Allows the application to ignore the
semantics of implementations between different kind of devices and
services. By using GnomeVFS, an application doesn’t need to care
whether it will read a file coming from a web server (URLs are
supported), or from within an compressed file archive (.zip, .rpm,
.tar.gz, etc.) or a memory card. Modeled to follow POSIX-style
file and directory operations. Basic operations are covered in this
material.

GDK-Pixbuf A library that implements various graphical bitmap for-
mats and also alpha-channeled blending operations using 32-bit pix-
els (RGBA). The Application Framework uses pixbufs to implement
the shadows and background picture scaling when necessary. Uses
GLib and GDK.

LibOSSO A library specific to the maemo platform that allows an ap-
plication to connect to D-Bus in a simple and consistent manner.

15

Also provides an application state serialisation mechanism. This
mechanism can be used by an application to store its state so that
it can continue from the exact point in time when user switched to
another application. Useful to conserve battery life on portable de-
vices. Only basic parts of LibOSSO are covered in this material and
more advanced use is covered in "maemo Platform Development"
material.

Whew, that was quite a list. As you can imagine, an introductory material
like this cannot even try to cover all the possibilities or the API functions
available in these libraries. We will try to do our best describing the bare
minimum in order for you to start writing applications for maemo.

There are some caveats related to API changes between major GTK+ ver-
sions, which will be mentioned in the text, so do not go and copy-paste existing
code blindly. Also this is a good place to remind you that most of the source
code that you can find easily is covered by either the GPL or LGPL licenses.
This material tries to stay away from legalese, but to put it bluntly, you cannot
copy GPL-ed source code into your proprietary projects (i.e., closed source).
This is against the license. GPL considers static linking as distribution (copy-
ing) too. Even linking dynamically from proprietary code against GPL-ed
libraries might be interpreted as prohibited by the license!

Note that it is normally allowable to read and learn from GPL-ed source
code. Indeed, unless you’re copying line by line from existing code base, this
can be an invaluable tool to learn how things are done in the "real world". This
is quite the opposite when reading proprietary source code as there is a risk of
learning something that the code owner will consider "intellectual property".
If you then use this "knowledge" in a free or open source project, you risk
polluting that project with unnecessary legalese.

As a side note, you might be interested to learn that almost all of the
GNOME-libraries are released under the LGPL-license. This means that you
can create proprietary software which will link into LGPL-libraries dynami-
cally at runtime. If you however modify the LGPL-library, the modifications
must be available in source form to the entities you distribute the binaries to
under the original license (LGPL).

2.6 Battery Doesn’t Last Forever!

Low power consumption is one of main hardware design goals with mobile
devices because of the limited electric charge in their power supplies. If the
hardware is designed correctly, it may itself contain logic and rules to enter
different power saving states. To enter these power saving states the hardware
requires that there is no activity in the system, in other words, there is no task
ready to be run by the OS kernel scheduling mechanism. Even if power saving
functionality is implemented in the hardware, activating it might not always be
possible. If the applications running on the hardware are "misbehaving", then
the system will be active all of the time and this makes it impossible for the
power saving features to be activated at hardware level. Some of these power
saving features include: changing the clock frequency dynamically, supporting
multiple operating voltages and switching integrated peripherals’ sleep modes.

16

Different parts of the hardware will require different amounts of power
to run. The following pie diagram is not based on any real measurements
but roughly shows how power consumption is distributed between different
subsystems in a device:

Figure 2.4: Diagram of power consumption in Mobile Devices

Keep the previous diagram in mind when you consider your application’s
"electricity needs". For example, in a GPS mapping application, the GUI inter-
face is a graphical map with the position and other relevant information. If such
display would keep the backlight active all the time, it would cause excessive
power usage. In this case, it might be prudent to ask the user whether they
really want to keep the backlight on, or provide a user-controllable button for
switching the backlight on/off.

When designing for mobile devices, it’s important that you (as the appli-
cation designer) consider different approaches to problems. You should also
consider system-wide power usage, i.e., how your application will change the
power performance of the device. The above diagram might seem rather ob-
vious, but it is often too tempting to start premature optimisation of memory
usage or code speed, and forget about power optimisation. In mobile environ-
ments, all three are important.

2.7 maemo development resources

maemo has its own website (at maemo.org), which includes:

• Links to mailing lists (and their archives)

• Link to the defect tracking system (bugzilla) at bugs.maemo.org

• White papers and tutorials

17

http://maemo.org
https://bugs.maemo.org

• Licenses used

• Trademark usage guidelines

• Development news

• Download information

• API references library versions used in maemo SDK

• The maemo wiki and other community supported resources (garage)

There is also an IRC channel for developers (#maemo@FreeNode). You
can find people related to Scratchbox and maemo hanging there lot of times.
Scratchbox also has its own channel.

Note that everything you discuss on the IRC channel and mailing lists (as
well as bugs you post using bugzilla) is *public information*. You might want to
ask someone whether your working environment has a policy on using public
resources before using them.

2.8 Other programming interfaces

Using the previously presented software library stack is not the only possi-
bility. The platform also includes SDL (Simple DirectMedia Layer) which is
a library that was originally developed by Loki Entertainment, a company
that specialised in creating Linux-versions of popular commercial games. It
contains most of the code necessary to write games and implement low-level
graphics. SDL is not covered by this material, but you can find the API (and
other) documentation at libsdl.org .

If you like to work with APIs that are hard to understand, you can use
the Xlib-interface and implement your interactive program directly with it (not
recommended for the faint hearted).

Using either SDL or Xlib is not directly supported by the environment and
will lead to applications which will not conform to the "look and feel" common
to applications designed for maemo. Such problems should be avoided so that
end-users do not get confused (they would expect an uniform interface for all
the applications they use). You won’t be able to utilise the virtual keyboard or
handwriting recognition in your application either. For some full-screen pointer
driven games this might not be a big issue, but for "normal" GUI applications
that the user will enter data and text, it is an issue.

It is also be possible to use the Python programming language to write
GUI programs (there are bindings for the Hildon toolkit as well) and there are
community driven projects for using Ruby and Vala as well as others.

18

http://www.libsdl.org/
http://pymaemo.garage.maemo.org/
http://maemo.rubyx.co.uk/ruby-maemo/
http://live.gnome.org/Vala

Chapter 3

Installing the SDK

3.1 Getting started

This chapter covers the pre-requisites and installation of the development en-
vironment. The maemo SDK consists of libraries and tools enabling the de-
velopment of applications for maemo and Internet Tablets. This SDK must be
installed into an development environment called Scratchbox in order for it to
be useful.

At this point, you should check the maemo training wiki pages maintained
by maemo community. They might contain some information which affects
the SDK installation process. Notice that the information in maemo wiki is not
verified by Nokia and thus Nokia cannot be responsible of that information.

We’ll start by installing Scratchbox first and then proceed by installing the
maemo SDK inside Scratchbox. The next chapter covers testing of the installa-
tion using simple text and graphical programs.

Installing the SDK can also be done by using automatic installation scripts,
using which is covered in the SDK installation instructions (part of the SDK).
This material will cover installation in a more step-by-step fashion, so that you
may easily create custom Scratchbox targets in the future.

3.2 What is Scratchbox?

Now that you’ve seen what both Internet Tablet and applications designed
for maemo are made of, you might be wondering how to write your own
applications. If you’ve used the various GNU tools before you also might be
wondering how all the different versions of tools and libraries are handled
during development.

Enter Scratchbox, a specially packaged "sandbox" environment which pro-
vides the necessary tools and also isolates your development efforts from your
real Linux system. Scratchbox also makes it easy to do cross compiling which
means building your software into a binary format that is executable in your
target device.

The name "Scratchbox" comes from "Linux from scratch" + "chroot jail"
(sandbox). This also tells you something about its implementation and intended
use. While working inside Scratchbox, you’ll be running programs in a changed

19

http://wiki.maemo.org/Maemo_Training

root environment (chroot). In Linux systems it’s possible to change the part of
file paths that a process will see. Scratchbox uses this mechanism on start to
switch its root directory (/) to something else than the real root. This is part of the
isolation technique used. Because of this, the environment is called a sandbox,
a private area where you can play around without disturbing the environment
and without all the mess that real sand would cause. The other parts of the
isolation technique are library call diversions (using LD_PRELOAD), wrapping
of compiler executables and other commands.

Scratchbox:

• Is a software package to implement development sandboxes (for isolation)

• Contains easy to use tools to assist cross-compilation

• Supports multiple developers using the same development system (not
covered in this material).

• Supports multiple configurations for each developer.

• Supports executing target executables on the hardware target, via a mech-
anism called sbrsh (not covered in this material).

• Supports running non-native binaries on the host system via instruction
set emulators (Qemu is used).

Beside these main features, it’s possible to develop your own software pack-
ages that can be installed and used inside a Scratchbox environment. Scratchbox
also includes some integration for Debian package management, so that once
we have setup our source files correctly and write a couple of configuration
files, we can create binary distribution packages for various architectures (sim-
ilar to .msi-files in Windows, or .rpm-files in Fedora Core, RHEL and SUSE).
These tools are also used to provide the environment with a packaging database
so that we can install other development packages over the Internet when we
need them (by using standard Debian package management tools).

The Internet Tablet also uses a similar packaging system, and this means
that packages built using Scratchbox and the SDK can be installed on the real
device.

Scratchbox is licensed under the GPL and it’s open for outside contributions.
For an in depth coverage on Scratchbox capabilities please see scratchbox.org.

In this material we’ll be using only the Scratchbox capabilities that are
necessary to use the maemo SDK.

3.3 Scratchbox components

Before installing Scratchbox, we need to cover some terminology that it uses in
its documentation. For most of the time Scratchbox will be abbreviated as sbox
from now on.

Scratchbox terminology:

core package package that contains the core tools implementing sbox. These
also include a host compiler (gcc) that can be used to build additional
tools for sbox.

20

http://www.scratchbox.org/

libs package contains the necessary libraries for the core to operate.

devkit a package for sbox that contains additional development tools. We’ll
be interested in 4 devkits (listed later).

toolchain compilers, linkers and tools for a specific target. We’ll be needing
two, but we’ll use the x86-one for now.

target the active toolchain and configuration we’re using currently. A target
uses a selected toolchain and contains a filesystem to use and related
configuration. You can have multiple targets, even if they all use the
same toolchains. This makes it easy to try something different, or start a
parallel target to test things from scratch.

• Note that an sbox target doesn’t technically mean the same thing as
the physical target device you might have (Internet Tablet).

rootstrap a target root filesystem image that can be used as a basis for further
development. Rootstraps normally contain the necessary files for some
specific development target, but sometimes only act as a starting point for
the target. There is a rootstrap for developing applications for maemo,
and we’ll refer to it with "maemo SDK" for the rest of the material. The
maemo SDK rootstrap is also slightly special in that one normally will
also run apt-get to install the "rest of" the SDK after extracting the base
rootstrap.

3.4 Prerequisites

Before continuing, the installation instructions of the maemo SDK should be
reviewed.

There is a special feature that the kernel needs to support in order for the
instruction emulator in sbox to work properly. This is the binfmt_misc-feature.
It is normally built as a module, so verify that it is loaded in Linux (no root
access needed for this):

user@system:~$ lsmod | grep binfmt
binfmt_misc 12936 0

If you do not see a line of output, attempt to do a modprobe binfmt_misc
as root (or with sudo). If this still does not work, you will have to find the
module somewhere, or even recompile the kernel. On most Debian-based
systems (Debian, Ubuntu), the module is included, so there should not be any
problems, unless you have built your own kernel. It is also possible that the
feature has been built inside the kernel directly, instead of a module.

Also a pseudo X server should be installed to act as an X client to the real
system. It will be necessary to run the applications that are developed, after
installing the SDK.

There are a few options for this purpose, but this material will cover the
usage of Xephyr. Xephyr is a Kdrive-based X server/client that can emulate
16-color depth for its clients even if it is acting as a client to an 24-bit depth real
X server. It also implements modern X protocol extensions.

21

The concept of having a program that is both X server and a client may seem
weird. However, there is no reason to worry, as it is a tested technology and
works quite well. If, on the other hand, it does not make any sense, revisit the
X Window System introduction in the previous chapter.

To install Xephyr:

• Issue the command sudo apt-get install xserver-xephyr on your
real Linux system.

• Verify installation status by issuing the commanddpkg -l | grep xephyr
(as non-root).

3.5 Automatic install of Scratchbox

Up-to-date installation instructions can be found from maemo.org with instruc-
tions for each maemo SDK Release.

The preferred way to install the Scratchbox is to use the automated instal-
lation script. Manual installation of the Scratchbox is described here for ed-
ucational purposes, and for situations where the automatic installation script
fails.

Quick installation of Scratchbox on a Debian system with the automated
install-script:

user@system:~$ sudo sh ./maemo-scratchbox-install_X.X.sh -u user

The -u user option is used, so that Scratchbox will add the user account
"user" automatically into the group that is allowed to use Scratchbox.

3.6 Manual install of Scratchbox

Scratchbox can also be installed manually. The Debian packages (for the real
Linux system) are located at scratchbox.org. Apophis is the release of Scratch-
box that is suited to be used with maemo 4.x SDK. Please refer to the Scratchbox
documentation for further instructions scratchbox.org.

3.7 Automatic install of the maemo SDK

Up-to-date installation instructions can be found from maemo.org, with in-
structions for each maemo SDK Release.

The preferred way to install the the maemo SDK is to use the automated
installation script. In some cases, using a manual process is more suitable;
this is covered later. Installing the SDK in an offline environment is officially
unsupported, but possible as well.

Quick installation with automated install-script:

user@system:~$ sh maemo-sdk-install_X.X.sh

Running this script will display the end user license agreement. Pressing
Enter key to accept the license presents you with package selection dialog.

22

http://maemo.org/development/sdks/
http://www.scratchbox.org/download/scratchbox-apophis/
http://www.scratchbox.org/documentation/user/scratchbox-1.0/html/installdoc.html
http://maemo.org/development/sdks/

You are presented with four options of installing SDK:

1. Minimal Rootstrap only. Choose this only if you are going to install all
packages you need from repository.

2. Runtime Environment. Use this to install and run software inside Scratch-
box. Cannot be used for building software.

3. Runtime Environment + All Dev Packages. Choose this to get a full
development environment.

4. Runtime Environment + All Dev and Dbg Packages. You will get a full
development environment plus debug symbols for many system compo-
nents.

By default, option 3 is selected.
N.B: The SDK installer will always download and install the minimal root-

strap, but will install additional packages using apt-get based on your choice.
In the next dialog, you can choose to install closed Nokia binaries or not.

23

Selecting ’yes’ will run the Nokia binaries installer script which will display
the EUSA(End User Software Agreement). If you accept the agreement, the
installer script will extract the Nokia binaries into a folder under the user’s
home directory inside scratchbox. It will also configure the /etc/apt/sources.list
file in the scratchbox targets to make this ’local repository’ visible to the Debian
apt tools.

In the next dialog, a summary of your selections so far and the default
settings are listed.

Selecting ’Continue’ will initiate the SDK installation process. If the selection
summary is not OK, you can cancel the process and re-start the SDK installation
script.

24

After it’s successful execution, you will have 2 scratchbox targets ready for
use:

• DIABLO_X86: Suitable for software development and testing.

• DIABLO_ARMEL: Suitable for building software for the ARM architecture.

The Nokia binaries are not installed by default but just made available. If
you wish to install all of them , then execute the following command inside the
scratchbox targets:

[sbox-DIABLO_<target>: ~] > fakeroot apt-get install maemo-explicit

N.B. The installer script by default will prompt the user to install the Nokia
binaries, which are not open source. To disable this feature, please use -f
command line parameter for the script. For more options, use the command
line help option.

user@system:~$ sh maemo-sdk-install_X.X.sh --help

3.8 Manual install of the maemo SDK

In order to install the maemo SDK manually, the first step is to download the
necessary rootstrap files. There will be two: one for the X86 target, and the
other one for the ARM target.

The rootstrap files are available in the same location as the automatic install
scripts (for maemo 4.1 SDK they can be found at maemo.org).

It is necessary to download the minimal rootstraps for i386 and arm, so the
filenames will be as follows:

• i386/maemo-sdk-rootstrap_4.1_i386.tgz for the X86 version

• armel/maemo-sdk-rootstrap_4.1_armel.tgz for the ARMEL version

For other versions of the SDK, the exact path names above will need to be
adjusted (please consult the SDK installation instructions).

Do not extract the downloaded files. They have to be moved under a
location where Scratchbox setup tools can find them (/scratchbox/packages/):

user@system:~$ sudo mv /tmp/download-location/maemo-sdk-rootstrap* \
/scratchbox/packages/

You are now ready to setup your first sbox target. Scratchbox comes with
a simple menu-driven tool (sb-menu), which can be used for this. The other
option would be using a command line driver tool (sb-conf), but using the
menu driver tool is easier.

The first step is to log in on the Scratchbox environment:

25

http://repository.maemo.org/stable/diablo/

Figure 3.1: Log-in to Scratchbox

By default, Scratchbox will activate the same target that was used previously,
but since this is the first time Scratchbox is used, there is no target to activate.
One can be built with sb-menu:

1. Type sb-menu inside Scratchbox to launch the tool.

[sbox-: ~] > sb-menu

Figure 3.2: Scratchbox menu

26

2. Select "Setup" in order to create a new target.

Figure 3.3: Setup a new target

Normally the tool would display all configured targets in a list, but since
there are none, the dialog is empty. Select "NEW" in order to create a new
target.

Figure 3.4: Setup a new target

27

3. Using the same names as the automatic install script uses allows you to
use the Nokia binaries installer later. Type DIABLO_X86 as the target
name.

Figure 3.5: Name your target

4. Since the first target will be for X86 environment, select the i386 compiler
version (cs2005q3.2-glibc2.5-i386).

Figure 3.6: Select i386 compiler

28

5. Next, you will need to select all the devkit packages that you want to
enable for the new target. You will need debian-etch, maemo3-tools and
perl. Do not select cputransp for the X86 target. Select each of them in a
row and then press "DONE".

Figure 3.7: Select devkit packages

6. Since the cputransp devkit was not selected in the previous step, selecting
the CPU transparency becomes "none".

29

Figure 3.8: No CPU transparency available

7. This concludes the target-specific tool choices, but there are still things to
do. The next step is to select a rootstrap package to extract into the target
(select "Yes").

Figure 3.9: Select Yes to install rootstrap package

30

8. And since the rootstraps were already downloaded and copied to the
proper location, select "File".

Figure 3.10: Select local file

9. Using TAB arrows, navigate to the proper rootstrap file (the one that ends
with i386), and select it by pressing SPACE and then press ENTER to go
forward.

Figure 3.11: Double check for the correct architecture (i386)

31

10. Unpacking the rootstrap will not take long, and soon after that, a dialog
will come up with a question about files installation. Select "Yes" (even
if it is not entirely obvious what the question means), and then select the
C-library, /etc, Devkits and fakeroot. Other tools can be installed
later from the maemo SDK repository (or local mirror of the repository).

Figure 3.12: Select Yes to install files

Figure 3.13: Select the first 4 options

32

11. After extracting the selected files from the rootstrap, the target is now
ready. You should next opt to select the target (so that it becomes active
and will be default target from now on).

Figure 3.14: Select Yes to activate the just created target

Selecting the target will restart the Scratchbox session and if everything
went well, you are now left with a very minimal maemo SDK environ-
ment:

Shell restarting...
[sbox-DIABLO_X86: ~] > arch
i686
[sbox-DIABLO_X86: ~] > dpkg -l | grep maemo-repository
ii maemo-repository 4.1-1 Configuration for maemo repository.

12. In order to complete the SDK installation, you will have to fetch the
package list and then install the maemo-sdk-dev meta-package. The
package depends on a lot of other packages, and all of them will be
downloaded into the target. The number of packages is quite significant,
so reserve some time for this step. This step will require a working Internet
connection (or DNS redirection into a local copy of the repository).

[sbox-DIABLO_X86: ~] > apt-get update

[sbox-DIABLO_X86: ~] > fakeroot apt-get install maemo-sdk-dev

Using fakeroot is important in the above command so that the package
install scripts think that they are running as the root user. Otherwise
the installation phase will fail with errors. Modern Debian-style repos-
itories are signed with GPG keys in order to prevent tampering with

33

the repository contents. The maemo repositories, however, do not use
this convention, and this makes apt-get slightly concerned. This can be
ignored by accepting installation of unverified packages.

13. The closed Nokia binaries can be obtained by running the script maemo-
sdk-nokia-binaries_X.X.sh. If you choose to accept the EUSA, then pro-
ceed to the following step.

14. You can install all the nokia binaries in your targets by installing the meta
package ’maemo-explicit’.

After apt-get finishes installing all the packages, the SDK installation is
ready.

When you are finished with sbox, you need to logout. This is done by
terminating the command shell with the exit command, or by using logout.

3.9 Manual install of the ARMEL target

If the X86 target was installed manually (above), it is advisable to create the
ARMEL target to enable building software for the Internet Tablets. This step
can also be postponed until the need to perform cross-building for Internet
Tablets arises.

If the automatic install process was used, the ARMEL target is already
available (as DIABLO_ARMEL), and the following steps are not necessary.

Creating the ARMEL target requires creating a new target in Scratchbox,
using the same steps that were taken for the X86 target.

Here is how the ARMEL target install process differs from the X86 (described
above):

• Stop any processes you may have running on the X86 sbox target (sb-conf
killall)

• Then start sb-menu as you did with the X86 target:

– Name your target DIABLO_ARMEL (for compatibility)

– You will need to select the arm version of the compiler.

– You will need to select the cputransp devkit and then select qemu-
arm-0.8.2-sb2 as the CPU transparency method (instead of none, as
used for X86).

– You will need to select the arm version of the maemo SDK base
rootstrap.

The apt-get command remains exactly the same, as do all of the other steps.
You may wish to verify the target by using the steps below ("Testing Scratch-

box"), at least build the hello world program and verify the architecture of the
resulting executable with file command.

34

Chapter 4

Testing the installation

4.1 Testing Scratchbox

The following shows how to create a small non-graphical Hello World program,
to verify that the Scratchbox environment works:

/**
* helloworld.c
*
* This maemo code example is licensed under a MIT-style license,
* that can be found in the file called "License" in the same
* directory as this file.
* Copyright (c) 2007-2008 Nokia Corporation. All rights reserved.
*
* Simple standard I/O (printf)-based Hello World that we can use to
* test our toolchains.
*/

#include <stdio.h> /* printf */

/* main implementation */
int main(int argc, char** argv) {

printf("Hello world\n");

/* In Linux, each process upon termination must set its exit code.
Exit code 0 means success to whoever executed this program. It
is routinely used inside scripts to test whether running some
program succeeded or not. Other exit codes mean failure. Each
program is free to use different non-zero codes to signify
different kinds of failures. These are normally listed in the
manual page for the program (since there is no standard). If you
forget to set your exit code, it will be undefined. */

return 0;
}

Listing 4.1: Program listing for our Hello World (helloworld.c)

First, it has to be verified that the proper directory is chosen. This can
be done by using pwd (print working directory). At this point, the directory
should be the home directory:

[sbox-DIABLO_X86: ~] > pwd
/home/user

35

Then, start an editor and write the small hello world program (you may use
the above listing as a template if you wish):

[sbox-DIABLO_X86: ~] > nano helloworld.c

nano is a GNU version of "pico" editor, which is a simple text file editor. Use
Control+character to execute the commands listed on the bottom of the screen.
WriteOut means "save". You may also use vi or an external editor to the SDK
environment (see below for hints on using vi and emacs).

[sbox-DIABLO_X86: ~] > gcc -Wall -g helloworld.c -o helloworld
[sbox-DIABLO_X86: ~] > ls -F hello*
helloworld* helloworld.c

The -g option to gcc tells the compiler to add debugging symbols to the
generated output file. -Wall will tell the compiler to enable most of the syntax
and other warnings that the source code could trigger. -o helloworld then tells
the output filename to which gcc will write the result binary.

The -F option to ls is mainly useful when working with a non-color terminal
(e.g. paper) to indicate the type of different files. The asterisk after helloworld
signifies that the file is an executable.

[sbox-DIABLO_X86: ~] > ./helloworld
Hello world

Running the binary should not produce any surprises.

[sbox-DIABLO_X86: ~] > file helloworld
helloworld: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV),
for GNU/Linux 2.6.0, dynamically linked (uses shared libs), not stripped

The file tool is a generic utility that will load some bytes from the start of
the given file and then use its internal database to decode what the file might
"mean". In this case, it will correctly decode the file as a X86 format binary file.

[sbox-DIABLO_X86: ~] > ldd helloworld
linux-gate.so.1 => (0xffffe000)
libc.so.6 => /lib/libc.so.6 (0xb7e9f000)
/lib/ld-linux.so.2 (0xb7fd2000)

[sbox-DIABLO_X86: ~] > ls -l /lib/libc.so.6
lrwxrwxrwx 1 user user 11 Nov 12 15:52 /lib/libc.so.6 -> libc-2.5.so
[sbox-DIABLO_X86: ~] > ls -l /lib/libc-2.5.so
-rwxr-xr-x 1 user user 1213256 Sep 7 13:28 /lib/libc-2.5.so

The names of dynamic libraries that the executable uses will be shown on
the left-hand column, and the files where the libraries live on the system if
executing the program will be shown on the right-hand column. After that, use
ls to check out the exact version of the C library that is used in the SDK by using
the "long listing format" -l option (running these commands using the ARMEL
target would yield more or less the same results). N.B. The linux-gate.so.1 is
a so-called hack to support a certain way of doing system calls on the X86
architecture, and is not always present on newer systems.

When comparing the version of libc used on the real system with ls -l, it
will probably show a difference (in version numbers). This means that the
executables that were built inside sbox use libraries that are also inside sbox.
This also means a stable development platform, especially when working in
team where each member has their own Linux, which they have customised.
This might not seem very important at this stage, but when encountering all
the different tools that are used in free software development, this feature of

36

sbox will come in handy.
Scratchbox does not contain any logic to emulate the kernel (or to use a

different kernel for running programs inside sbox). The only easy possibility
for this is using the sbrsh CPU-transparency option.

vi
It is also possible to use vi (Visual Interactive) editor inside sbox. It is

possible to install own favourite editors inside sbox (with the debian-devkit),
but the following examples will use nano, since it is the easiest to start with.
To learn vi, it is best to ask an Internet search engine for a "vi tutorial". There
are lots of them to be found. To understand why vi can be considered to be
"strange", it is useful to know its history first. Using vi is optional of course.

The version of vi that is commonly installed on Linux systems is really vim
(VI iMproved), which is a more user friendly vi, including syntax high-lighting
and all kinds of improvements. sbox has a program called vimtutor installed
to help in learning the use of vi interactively.

It is also fairly simple to use existing editors. /scratchbox/users/x/home/x/
is the home directory of user x when accessing it from the real Linux desktop.
Ubuntu comes with gedit, which is a fairly good graphical editor that also
supports syntax high-lighting and multiple tabs for editing multiple files at the
same time.

And as a final note, also emacs can be used.
Here is how to do it:

• Start emacs outside of sbox

• In emacs, use M-x server-start

• Inside sbox use emacsclient filename to open the file for editing in your
emacs

4.2 Writing a GUI Hello World

The following example shows how to write the first GUI program. N.B. Only
GTK+ library is used here, meaning that the platform provided widgets or
coding style are not utilised. That will be discussed soon.

/**
* gtk_helloworld -1.c
*
* This maemo code example is licensed under a MIT-style license,
* that can be found in the file called "License" in the same
* directory as this file.
* Copyright (c) 2007-2008 Nokia Corporation. All rights reserved.
*
* A simple GTK+ Hello World. You need to use Ctrl+C to terminate
* this program since it doesn’t implement GTK+ signals (yet).
*/

#include <stdlib.h> /* EXIT_* */
/* Introduce types and prototypes of GTK+ for the compiler. */
#include <gtk/gtk.h>

int main(int argc, char** argv) {

37

/* We’ll have two references to two GTK+ widgets. */
GtkWindow* window;
GtkLabel* label;

/* Initialize the GTK+ library. */
gtk_init(&argc, &argv);

/* Create a window with window border width of 12 pixels and a
title text. */

window = g_object_new(GTK_TYPE_WINDOW ,
"border-width", 12,
"title", "Hello GTK+",
NULL);

/* Create the label widget. */
label = g_object_new(GTK_TYPE_LABEL ,
"label", "Hello World!",
NULL);

/* Pack the label into the window layout. */
gtk_container_add(GTK_CONTAINER(window), GTK_WIDGET(label));

/* Show all widgets that are contained by the window. */
gtk_widget_show_all(GTK_WIDGET(window));

/* Start the main event loop. */
g_print("main: calling gtk_main\n");
gtk_main();

/* Display a message to the standard output and exit. */
g_print("main: returned from gtk_main and exiting with success\n");

/* The C standard defines this condition as EXIT_SUCCESS , and this
symbolic macro is defined in stdlib.h (which GTK+ will pull in
in-directly). There is also a counter-part for failures:
EXIT_FAILURE. */

return EXIT_SUCCESS;
}

Listing 4.2: A simple GTK+ Hello World (gtk_helloworld-1.c)

Build your program:

[sbox-DIABLO_X86: ~] > gcc -Wall -g gtk_helloworld-1.c -o gtk_helloworld-1
gtk_helloworld-1.c:15:21: gtk/gtk.h: No such file or directory
gtk_helloworld-1.c: In function ‘main’:
gtk_helloworld-1.c:20: error: ‘GtkWindow’ undeclared (first use in this function)
gtk_helloworld-1.c:20: error: (Each undeclared identifier is reported only once
gtk_helloworld-1.c:20: error: for each function it appears in.)
gtk_helloworld-1.c:20: error: ‘window’ undeclared (first use in this function)
gtk_helloworld-1.c:21: error: ‘GtkLabel’ undeclared (first use in this function)
gtk_helloworld-1.c:21: error: ‘label’ undeclared (first use in this function)
gtk_helloworld-1.c:24: warning: implicit declaration of function ‘gtk_init’
gtk_helloworld-1.c:28: warning: implicit declaration of function ‘g_object_new’
gtk_helloworld-1.c:28: error: ‘GTK_TYPE_WINDOW’ undeclared (first use in this function)
gtk_helloworld-1.c:34: error: ‘GTK_TYPE_LABEL’ undeclared (first use in this function)
gtk_helloworld-1.c:39: warning: implicit declaration of function ‘gtk_container_add’
gtk_helloworld-1.c:39: warning: implicit declaration of function ‘GTK_CONTAINER’
gtk_helloworld-1.c:39: warning: implicit declaration of function ‘GTK_WIDGET’
gtk_helloworld-1.c:42: warning: implicit declaration of function ‘gtk_widget_show_all’
gtk_helloworld-1.c:45: warning: implicit declaration of function ‘g_print’
gtk_helloworld-1.c:46: warning: implicit declaration of function ‘gtk_main’

Compiling leads to a lot of errors

38

As can be seen, this does not look at all promising. At the start of the source
code, there was #include. The compiler needs to be told where it should look
for that critical GTK+ header file. It is also quite likely that some special flags
need to be passed to the compiler in order for it to use the proper compilation
settings when building GTK+ software. How to decide which flags to use?

This is where a tool called pkg-config comes to the rescue. It is a simple
program that provides a unified interface to output compiler, linker flags and
library version numbers. Its utility will be discussed later, when starting the
automating of the building process. For now, the pkg-config will be used
manually.

[sbox-DIABLO_X86: ~] > pkg-config --list-all | sort
.. listing cut to include only relevant libraries ..
dbus-glib-1 dbus-glib - GLib integration for the free desktop message bus
gconf-2.0 gconf - GNOME Config System.
gdk-2.0 GDK - GIMP Drawing Kit (x11 target)
gdk-pixbuf-2.0 GdkPixbuf - Image loading and scaling
glib-2.0 GLib - C Utility Library
gnome-vfs-2.0 gnome-vfs - The GNOME virtual file-system libraries
gtk+-2.0 GTK+ - GIMP Tool Kit (x11 target)
hildon-1 hildon - Hildon widgets library
hildon-fm-2 hildon-fm - Hildon file management widgets
pango Pango - Internationalised text handling
x11 X11 - X Library

Listing the installed pkg-config packages.

pkg-config also has some other commands that will prove useful:

[sbox-DIABLO_X86: ~] > pkg-config --modversion gtk+-2.0
2.10.12

Listing the version of an installed pkg-config package, GTK+ in this case.

[sbox-DIABLO_X86: ~] > pkg-config --cflags gtk+-2.0
-I/usr/include/gtk-2.0 -I/usr/lib/gtk-2.0/include -I/usr/include/atk-1.0
-I/usr/include/cairo -I/usr/include/pango-1.0 -I/usr/include/glib-2.0
-I/usr/lib/glib-2.0/include -I/usr/include/freetype2
-I/usr/include/libpng12

Getting the necessary options and flags for gcc that allow using proper header files with GTK+

.

As can be seen, there are many. With this version of GTK+, all of them are
-I options. They are used to tell the compiler which additional directories to
check for system header files in addition to the default ones.

[sbox-DIABLO_X86: ~] > pkg-config --libs gtk+-2.0
-lgtk-x11-2.0 -lgdk-x11-2.0 -latk-1.0 -lgdk_pixbuf-2.0 -lm
-lpangocairo-1.0 -lpango-1.0 -lcairo -lgobject-2.0 -lgmodule-2
-ldl -lglib-2.0

Getting the necessary options and flags for gcc that allow linking against the GTK+ library.

When linking the application, the linker has to be told which libraries to link
against. In fact, the whole program linking phase will fail (as shown shortly)
without this information.

Now it is time to try and compile the software again, this time using the
compilation flags that pkg-config provides:

39

[sbox-DIABLO_X86: ~] > gcc -Wall -g gtk_helloworld-1.c \
‘pkg-config --cflags gtk+-2.0‘ -o gtk_helloworld-1
/var/tmp/ccQ14x4c.o: In function ‘main’:/home/user/gtk_helloworld-1.c:24:
undefined reference to ‘gtk_init’
:/home/user/gtk_helloworld-1.c:28: undefined reference to ‘gtk_window_get_type’
:/home/user/gtk_helloworld-1.c:28: undefined reference to ‘g_object_new’
:/home/user/gtk_helloworld-1.c:34: undefined reference to ‘gtk_label_get_type’
:/home/user/gtk_helloworld-1.c:34: undefined reference to ‘g_object_new’
:/home/user/gtk_helloworld-1.c:39: undefined reference to ‘gtk_widget_get_type’
:/home/user/gtk_helloworld-1.c:39: undefined reference to ‘g_type_check_instance_cast’
:/home/user/gtk_helloworld-1.c:39: undefined reference to ‘gtk_container_get_type’
:/home/user/gtk_helloworld-1.c:39: undefined reference to ‘g_type_check_instance_cast’
:/home/user/gtk_helloworld-1.c:39: undefined reference to ‘gtk_container_add’
:/home/user/gtk_helloworld-1.c:42: undefined reference to ‘gtk_widget_get_type’
:/home/user/gtk_helloworld-1.c:42: undefined reference to ‘g_type_check_instance_cast’
:/home/user/gtk_helloworld-1.c:42: undefined reference to ‘gtk_widget_show_all’
:/home/user/gtk_helloworld-1.c:45: undefined reference to ‘g_print’
:/home/user/gtk_helloworld-1.c:46: undefined reference to ‘gtk_main’
:/home/user/gtk_helloworld-1.c:49: undefined reference to ‘g_print’
collect2: ld returned 1 exit status

Trying to build again, with proper C flags.

The command above might seem somewhat strange to someone not having
used UNIX command shells. What is happening here is the back-tick expansion.
It is an operation where the shell will start another shell to execute just the text
inside the back-ticks. In this case, another shell is started to run pkg-config
--cflags gtk+-2.0. Normal output from the commands is then read into the
main shell, and this output is replaced into the location where the back-ticks
were. N.B. It is very important to use the ‘ character. Not ’, nor the other
quote character that might be used in a Swedish keyboard layout (also used in
Finland). In some keyboard layouts, it will be necessary to press space after the
back-tick since it is also used for character composition (try back-tick and letter
’a’).

Something like $(pkg-config ..) might also be encountered. This is the same
operation as back-tick. However, back-tick is more portable across antique
UNIX shells. Nowadays, it is a matter of taste which way to use it.

The errors printed by gcc are quite different this time. These errors come
from ld, which is the binary code linker in Linux systems and it is complaining
about missing symbols (the undefined references). Obviously something is still
missing.

The linker needs to be told where to find the missing symbols. Since it is
the linker this is all about, and not the compiler, the missing symbols are found
in the library files. To fix the problem (again with the back-ticks), pkg-config
--libs can be used:
[sbox-DIABLO_X86: ~] > gcc -Wall -g gtk_helloworld-1.c \
‘pkg-config --cflags gtk+-2.0‘ -o gtk_helloworld-1 \
‘pkg-config --libs gtk+-2.0‘
[sbox-DIABLO_X86: ~] >

Successful compile and linking.

The order and placement of the pkg-configs above is important: the--cflags
need to be placed as early as feasible, but the --libsmust come last (this does
matter in some problematic linking scenarios).

The next step is to repeat the basic commands that were used before with
the non-GUI hello world:

40

[sbox-DIABLO_X86: ~] > ls -l gtk_helloworld-1
-rwxrwxr-x 1 user user 16278 Nov 20 00:22 gtk_helloworld-1
[sbox-DIABLO_X86: ~] > file gtk_helloworld-1
gtk_helloworld-1: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV),
for GNU/Linux 2.6.0, dynamically linked (uses shared libs), not stripped
[sbox-DIABLO_X86: ~] > ldd gtk_helloworld-1
linux-gate.so.1 => (0xffffe000)
libgtk-x11-2.0.so.0 => /usr/lib/libgtk-x11-2.0.so.0 (0xb7c4c000)
libgdk-x11-2.0.so.0 => /usr/lib/libgdk-x11-2.0.so.0 (0xb7bc8000)
libatk-1.0.so.0 => /usr/lib/libatk-1.0.so.0 (0xb7bad000)
libgdk_pixbuf-2.0.so.0 => /usr/lib/libgdk_pixbuf-2.0.so.0 (0xb7b97000)
libm.so.6 => /lib/libm.so.6 (0xb7b71000)
libpangocairo-1.0.so.0 => /usr/lib/libpangocairo-1.0.so.0 (0xb7b68000)
libpango-1.0.so.0 => /usr/lib/libpango-1.0.so.0 (0xb7b2b000)
libcairo.so.2 => /usr/lib/libcairo.so.2 (0xb7ab5000)
libgobject-2.0.so.0 => /usr/lib/libgobject-2.0.so.0 (0xb7a7a000)
libgmodule-2.0.so.0 => /usr/lib/libgmodule-2.0.so.0 (0xb7a76000)
libdl.so.2 => /lib/libdl.so.2 (0xb7a71000)
libglib-2.0.so.0 => /usr/lib/libglib-2.0.so.0 (0xb79dd000)
libc.so.6 => /lib/libc.so.6 (0xb78b2000)
libX11.so.6 => /usr/lib/libX11.so.6 (0xb77bd000)
libXfixes.so.3 => /usr/lib/libXfixes.so.3 (0xb77b8000)
libXtst.so.6 => /usr/lib/libXtst.so.6 (0xb77b3000)
libfontconfig.so.1 => /usr/lib/libfontconfig.so.1 (0xb7788000)
libXext.so.6 => /usr/lib/libXext.so.6 (0xb777a000)
libXrender.so.1 => /usr/lib/libXrender.so.1 (0xb7771000)
libXi.so.6 => /usr/lib/libXi.so.6 (0xb7769000)
libXrandr.so.2 => /usr/lib/libXrandr.so.2 (0xb7762000)
libXcursor.so.1 => /usr/lib/libXcursor.so.1 (0xb7759000)
/lib/ld-linux.so.2 (0xb7fc3000)
libpangoft2-1.0.so.0 => /usr/lib/libpangoft2-1.0.so.0 (0xb772b000)
libfreetype.so.6 => /usr/lib/libfreetype.so.6 (0xb76c6000)
libz.so.1 => /usr/lib/libz.so.1 (0xb76b7000)
libpng12.so.0 => /usr/lib/libpng12.so.0 (0xb7692000)
libXau.so.6 => /usr/lib/libXau.so.6 (0xb768f000)
libXdmcp.so.6 => /usr/lib/libXdmcp.so.6 (0xb7689000)
libexpat.so.1 => /usr/lib/libexpat.so.1 (0xb7669000)

Victory at last!

As can be seen from the last ldd listing, this simple Hello World manages
to require quite a number of other libraries to run. The program directly only
requires GTK+, but GTK+ needs GDK (and all the other libraries that were
covered in the introduction). Those libraries in turn need other libraries and so
on.

So, what is seen here is almost the full list of all required libraries to run.
Almost, because modern UNIX systems (and Linux) can also load libraries on
demand (called runtime dynamic module loading).

This might make one wonder, whether writing simple a Hello World really
is so painful. It is actually much simpler in real life. The reason why this
chapter introduces the various errors is that they will be encountered in actual
situations quite early on. This chapter serves as a reference to some possible
errors, and (hopefully) also show a solution.

All of these tools will be needed later on, when starting the packaging of
the software, and they will not be covered at this level of detail there.

4.3 Running the GUI Hello World

Let’s try to execute our nice Hello World (inside sbox):

[sbox-DIABLO_X86: ~] > ./gtk_helloworld-1
gtk_helloworld-1[4759]: GLIB WARNING ** Gtk - cannot open display:
[sbox-DIABLO_X86: ~] > echo $DISPLAY

41

Don’t despair, the end is near.

Seems that GTK+ is having problems opening the connection to the X server.
This can be verified by displaying the contents of the DISPLAY environmental
variable, and indeed, it comes out empty. If the DISPLAY variable contains
:0.0, it means that the value has been copied from the real graphical session into
sbox, and clients will try to connect to the real X server (and probably fail in
authentication).

Xephyr was set up in the previous chapter, so now it has to be started so
that it can be used as the server for all clients running inside the Scratchbox
session.

4.4 Starting virtual X server (Xephyr)

Open another terminal emulator (don’t close your sbox session).
Start up the server with:

user@system:~$ Xephyr :2 -host-cursor -screen 800x480x16 -dpi 96 -ac \
-extension Composite

Starting Xephyr for use with the SDK.

The first parameter is the Display number (:2) that X server should start on
(and provide to clients). :2 is used here since it is normally unused in regular
Linux desktop environments.

The screen parameters tells Xephyr how large the screen should be (in
pixels) and how many bits to use for color-information (16). This is the res-
olution in pixels of Internet Tablets. -dpi 96 tells the server to tell its clients
that the logical to physical size mapping should be done with 96 dots-per-inch
setting (should the client request that information). The DPI setting is mainly
important when dealing with fonts and text.
-ac tells Xephyr that any client may connect to it. This means that you

should be extremely careful about your networking environment so that rogue
users will not target your Xephyr with their own clients.

The last parameter (-extension Composite) disables the Composite exten-
sion.

When Xephyr starts, it will connect to the X server given in the DISPLAY
environmental variable that it sees. Do not modify or touch your real DISPLAY
variable that Xephyr sees.

42

Figure 4.1: Only the X server running

By default the server will have one screen, and it will be filled by the default
X server background pattern (a tight braid made out of white pixels on black).

Note that the terminal emulator (more specifically, the shell that the emula-
tor started) is waiting for Xephyr to end. If you ever need to kill all the graphical
applications running in the SDK, you can just close your Xephyr. This will leave
the daemons running inside sbox (D-Bus and friends). Normally this is not a
good idea. To ask the foreground process to terminate itself, use Ctrl+c. Inside
sbox this same technique can be used to terminate a graphical client that you
start from the command line (as will be done shortly).

4.5 Directing the client to virtual server

Now that we have an X server running, it’s time to switch back to sbox.
We start by setting the environmental variable to use a local domain socket

to the X server, and tell all X clients to connect to Display number 2, since that’s
where we just started our Xephyr on:

[sbox-DIABLO_X86: ~] > export DISPLAY=:2
[sbox-DIABLO_X86: ~] > ./gtk_helloworld-1
main: calling gtk_main
[[Ctrl+c]]

Setting the correct DISPLAY content and running a simple GUI program.

We’ll need to terminate the program with Ctrl+c, since it doesn’t implement
any graphical methods of closing it. Note that you’ll need to set your DISPLAY
correctly on each sbox login (or target switch).

43

Figure 4.2: A puny little Hello World

Not really impressive, is it? If you remember what a window manager is,
you will note that since it’s missing (we didn’t start any for the X server) you
cannot control the Hello World with your mouse. Kill it with Ctrl+c for now
(we’ll start it again in a moment).

To quickly detach the foreground process from your shell and continue
running it in the background, use the following key-combination Ctrl+z and
then use the shell command bg. Between those two steps the process will be
"paused".

4.6 Starting the Application Framework

The next step is to have a nice graphical environment that will implement a
nicer graphical screen. We will start a series of clients each of which have a
specific role. These were introduced before.

To start the Application Framework (referred to as AF from now on), we
can use a handy script that comes with the SDK:

[sbox-DIABLO_X86: ~] > af-sb-init.sh start
Sample files present.
Starting DBUS system bus
Starting D-BUS session bus daemon
Starting Maemo Launcher: maemo-launcher
maemo-launcher: error rising the oom shield for pid=4847 status=5632.
Starting Sapwood image server
Starting Matchbox window manager
sapwood-server[4858]: GLIB INFO default - server started
Starting clipboard-manager
Starting Keyboard
maemo-launcher: invoking ’/usr/bin/hildon-input-method.launch’
Starting Hildon Desktop
maemo-launcher: invoking ’/usr/bin/hildon-desktop.launch’
.. listing cut for brevity ..
[sbox-DIABLO_X86: ~] >

Using the af-sb-init.sh script to start the AF.

44

We use start and stop parameters to start and stop the graphical environ-
ment. If everything works, you should see a screen resembling this one:

Figure 4.3: Much better

4.7 Running Hello World in the AF

While AF is running, let’s start our Hello World again (./gtk_helloworld-1 in
sbox):

Since there now is a window manager running, our client will get much
larger window to draw in. GTK+will scale the widget accordingly (only there
is only one widget in our Hello World). Note that the screen still looks a bit

45

off. If you "close the application" by pressing the X in top-right corner, you will
notice that our Hello World will disappear from the screen. Since we haven’t
implemented signals yet and thus don’t handle window destruction, our Hello
World application will only be hidden. It is still running (as you can see in
your sbox terminal emulator since the shell doesn’t display its prompt). Stop
the Hello World with Ctrl+c.

Next we’ll use a SDK utility script called run-standalone.sh. Its job is to
setup correct environmental variables for themes and communication for the
command that is given to it as its command line parameter.

Use run-standalone.sh ./gtk_helloworld-1 to start your X client again:

The screen is still a bit off (we don’t get nice borders around our main
GtkLabel widget) but looks already somewhat better. The text is scaled to be
more in sync with the other text sizes and also the color is in sync with the
platform color (it’s not gray anymore).

In "maemo Application Development" material you’ll learn how to adapt
our application for maemo, so that it will "sit better" in the environment. You’ll
also learn how to react to HID-events, how to use widgets and how to package
your software so that it can be easily distributed to users and installed on
Internet Tablets.

46

	Introduction
	Introduction to Maemo Getting Started

	What is Maemo
	What is this thing called maemo™?
	Internet Tablet overview
	Maemo runtime environment
	X Window System
	Typical maemo GUI application
	Battery Doesn't Last Forever!
	maemo development resources
	Other programming interfaces

	Installing the SDK
	Getting started
	What is Scratchbox?
	Scratchbox components
	Prerequisites
	Automatic install of Scratchbox
	Manual install of Scratchbox
	Automatic install of the maemo SDK
	Manual install of the maemo SDK
	Manual install of the ARMEL target

	Testing the installation
	Testing Scratchbox
	Writing a GUI Hello World
	Running the GUI Hello World
	Starting virtual X server (Xephyr)
	Directing the client to virtual server
	Starting the Application Framework
	Running Hello World in the AF

